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ABSTRACT

Using Perceptually Grounded Semantic Models to Autonomously Convey
Meaning Through Visual Art

Derrall L. Heath
Department of Computer Science, BYU

Doctor of Philosophy

Developing advanced semantic models is important in building computational systems that
can not only understand language but also convey ideas and concepts to others. Semantic models
can allow a creative image-producing-agent to autonomously produce artifacts that communicate
an intended meaning. This notion of communicating meaning through art is often considered a
necessary part of eliciting an aesthetic experience in the viewer and can thus enhance the (perceived)
creativity of the agent. Computational creativity, a subfield of artificial intelligence, deals with
designing computational systems and algorithms that either automatically create original and
functional products, or that augment the ability of humans to do so. We present work on DARCI
(Digital ARtist Communicating Intention), a system designed to autonomously produce original
images that convey meaning. In order for DARCI to automatically express meaning through the art
it creates, it must have its own semantic model that is perceptually grounded with visual capabilities.

The work presented here focuses on designing, building, and incorporating advanced
semantic and perceptual models into the DARCI system. These semantic models give DARCI a
better understanding of the world and enable it to be more autonomous, to better evaluate its own
artifacts, and to create artifacts with intention. Through designing, implementing, and studying
DARCI, we have developed evaluation methods, models, frameworks, and theories related to the
creative process that can be generalized to other domains outside of visual art. Our work on DARCI
has even influenced the visual art community through several collaborative efforts, art galleries, and
exhibits. We show that the DARCI system is successful at autonomously producing original art that
is meaningful to human viewers. We also discuss insights that our efforts have contributed to the
field of computational creativity.

Keywords: computational creativity, semantics, perception, visual art, artificial neural networks,
deep learning
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Chapter 1

Introduction

Computers have become a crucial part of society, from business and industry, to research

and government, to our personal lives. With such thorough integration comes the need for more

intelligent programs and algorithms that can effectively and efficiently meet the demands of

society. Thus, advances in artificial intelligence—the development of computer systems able to

perform tasks that normally require human intelligence—should be a high priority. Creativity

is an aspect of intelligence that is highly valued because it allows us (humans) to innovate and

think outside the box, and it allows us to accomplish tasks perhaps otherwise thought to be

impossible. Computational creativity, which is a sub-field of artificial intelligence, is “the philosophy,

science, and engineering of computational systems which, by taking on particular responsibilities,

exhibit behaviors that unbiased observers would deem to be creative” [28]. Computationally

creative systems are applicable in many domains, including: mathematical theories [26], video

games [32], art [25, 109], music [33, 83, 115, 175], culinary recipes [116, 160], metaphors [161],

narratives [62, 177], poetry [163], humor [13], and many others.

Although there are no universally agreed upon definitions of creativity, most definitions

include ideas such as novelty and quality [14]. In the domain of visual art, novelty is often straight-

forward (the art is new and original). However, what does it mean for a piece of art to have quality?

Some would say that quality means art that is simply pleasing to look at. Others may say quality

means art that requires a large amount of skill or effort to produce. A very general notion of quality

is that art should elicit some type of aesthetic experience in the viewer. Csı́kzentmihályi says, “...the

aesthetic experience occurs when information coming from the artwork interacts with information
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already stored in the viewer’s mind...” [36]. This transfer of information implies that quality art

communicates some kind of meaning. It implies that the artist created the art with intent and

purpose. This idea of intent and purpose suggests that a creative system must be able to appreciate

(i.e., evaluate) its own creations [24]. There must be a self-evaluation component that governs and

directs the creative process so that when the system is exploring new ideas, it knows which ones are

worth pursuing.

If a digital artist intends to create art that conveys an idea, it must first know what that

idea is. It must have an understanding of it. It must have its own internal representation of that

idea in order to then express that idea through art. In cognitive psychology, the term semantic

memory refers to the memory of meaning and other concept-based knowledge that allows people

to consciously recall general information about the world [152]. An artificial artist would need

its own computational model of semantic memory in order to intentionally create art that conveys

meaning. Conceptual knowledge is clearly tied to language, where words represent concepts (i.e.,

they have meaning). The question of what gives words (or concepts) meaning has been studied

for years across multiple disciplines. This topic has been approached from a cognitive psychology

perspective (already mentioned as semantic memory) [152], from a linguistic perspective (referred

to as lexical semantics, or cognitive semantics) [136], and from a computer science perspective

(computational semantics) [19].

Cognitive psychologists and linguists typically try to build semantic models (computational

approximations of some or all aspects of semantics) in order to understand how language and the

human mind work. Computer scientists, on the other hand, typically build semantic models in order

to solve problems. Computational semantics has its roots in natural language processing and in

information retrieval, where the goal is to retrieve documents that match a search query. Developing

semantic models help search algorithms do more than just a keyword match. For example, a user

could type in the word ‘dog’ and the system can understand that documents containing words like

‘puppy’ and ‘canine’ could also be relevant to the search. In NLP, semantic models are potentially

useful for many tasks including word sense disambiguation, semantic parsing, text summarization,

2



www.manaraa.com

machine translation, topic modeling, text classification, and speech recognition. Other applicable

areas include data mining, common sense reasoning, question answering, content-based image/video

retrieval, and information extraction.

A computational system that autonomously creates visual art needs a semantic model that

allows it to understand language in ways that influence the art it produces. For example, suppose

a system is trying to create an image about the concept ‘war’. A semantic model will enable the

system to understand that ‘war’ is associated with many other concepts such as ‘army’, ‘battle’,

‘bloody’, ‘scary’, etc. These other concepts give context to the meaning of ‘war’ and could be

incorporated into the image. Ultimately, however, a semantic model must be grounded in perception

in order for the system to understand its own artwork and to truly represent meaning. With visual

art, semantic models need to learn associations between words and image qualities. For example,

the model could learn that ‘happy’ images are often bright and colorful, while ‘scary’ images tend

to be dark with jagged lines and edges. The system could then render an image about ‘war’ in a

‘scary’ manner (i.e., dark with jagged lines and edges) because ‘scary’ is associated with ‘war’. The

final image will in some way artistically convey the meaning of ‘war’.

In this dissertation, we argue that the ability to perceive is fundamental to the creative

process and enables a system to learn its own semantic model. Even in humans, perception directly

influences our ability to think and understand, and the better and more varied our perceptual abilities

are, the more we are able to think about, imagine, and ultimately, create [7, 70]. Indeed, every

memory and every thought we have is in terms of what we have experienced (perceived) in the

past. Most psychologists agree that our perceptions (senses), our conceptual knowledge, and our

memories make up our mental model and form the bases of creative tasks like imagination [10, 59].

It has also been suggested that the most creative and influential people are ones that literally perceive

(and therefore think) differently [11]. Likewise, a creative computational system must have its own

perceptual abilities that allow it to have experiences, to learn, and to ground its semantic model,

which can then facilitate and influence the meaningful creation of artifacts.
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1.1 The DARCI System

In this dissertation we present a computational system we have developed to explore computational

creativity in the domain of visual art. This system, called DARCI (Digital ARtist Communicating

Intention), is designed to autonomously create novel and interesting digital images that convey

meaning to the viewer. Throughout this dissertation we have developed fundamental (domain

independent) theories of how perceptual ability and semantic understanding influence and facilitate

the creative process, and we use the DARCI system to experiment with and validate those theories.

The DARCI system has been around for several years and previous work has already been done

by collaborator David Norton; this dissertation builds off of that prior work. Specifically, the

work presented here focuses on designing, building, and incorporating advanced semantic and

perceptual models into the DARCI system. These advanced semantic models give DARCI a better

understanding of the world and enable it to be more autonomous, to better evaluate its own artifacts,

and to create artifacts with intention.

1.2 Background

This dissertation contributes to the area of computational creativity in the visual art domain as well as

to computational models of semantics. We first provide background on the computational creativity

literature and discuss work related to the visual art domain. We will then provide background for

semantic models and talk about work related to semantic models in visual art. Finally, we give

background on prior work done on the DARCI system, which will set the stage for the contributions

presented in this dissertation.

1.2.1 Computational Creativity and Visual Art

The field of computational creativity begins with the ability to measure and attribute creativity in a

computational system, which requires a discussion on what creativity actually means. Although

there is no single agreed upon definition of creativity, most definitions involve the ideas of originality
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and quality. Boden’s definition of computational creativity is the one most often cited, which argues

that a creative system can produce artifacts that are both novel and valuable [14]. In this case novelty

means that the artifact produced is new and original, while valuable means the artifact is useful

or meaningful in some way. Others have expanded on this notion of creativity including Ritchie’s

prospective metrics for measuring creativity [138] and Colton’s creative tripod [24].

Ritchie discusses creativity in terms of the artifacts generated by a system and attributes

creativity to a system if it can produce creative artifacts [ 138]. In addition to Boden’s two criteria,

Ritchie adds typicality, which is the extent to which an artifact is an example of the class in question.

For example, in the visual arts domain, it is the extent to which the artifact is a visual depiction

of something. Colton’s creative tripod focuses on the creative process rather than the artifacts

produced [24]. The notion of quality is characterized in terms of skill, or the capacity of a system

to produce quality artifacts. The notion of novelty is characterized in terms of imagination, or the

capacity of the system to produce original and meaningful (non-random) artifacts. Colton then adds

an attribute called appreciation, or the ability of the system to recognize the quality and novelty of

its own artifacts (which emphasizes process over product and the need for self-evaluation).

Many computational systems exist that are designed to produce visual art. In the field of com-

putational creativity, some of the more prominent systems include Harold Cohen’s AARON [109]

and Simon Colton’s Painting Fool [25]. Although these two systems are often cited and talked about

in the computational creativity community, both authors have opted to hide the inner workings of the

system from the public. For the Painting Fool, this obfuscation is a deliberate attempt to personify

the system as part of Colton’s experiments with the perception of creativity being a requirement

for attribution of creativity. While details governing AARON and The Painting Fool are hidden,

many other image generating systems have been openly described in the computational creativity

community.

Many such systems center around evolutionary algorithms, due to the innate ability of

evolution to yield unpredictable solutions to problems, as discussed by Gero [61]. The use of

evolutionary algorithms for generating visual art starts by first instantiating a random population
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of possible entities. Each of of these entities is a digital encoding called a genotype, which can

be decoded and transformed into an actual image (referred to as the phenotype). Each of the

genotypes in the population are usually converted to their respective phenotypes and evaluated

by a fitness function. This fitness function determines which genotypes get to pass on their traits

to future generations of the evolutionary algorithm. Over multiple iterations (or generations), the

population converges toward images that maximize the score from the fitness function. Because art

is inherently subjective and difficult to analyze, the fitness function (i.e., evaluation step) is often

left to human judgment in most systems that produce evolutionary art. Sims was one of the first to

use evolutionary algorithms to produce visual art [148], while a more recent system is Secretan’s

popular online Picbreeder [145]. In these cases the system generates the art, but it is the human that

evaluates and governs the evolutionary process.

Self-evaluation in Artificial Artists

The need to depend on human judgment in the evolutionary process not only is time consuming,

but also fails to completely automate the creative process. Ideally, a creative system should be able

to govern itself as it explores possible images by evaluating them on its own. There are several

evolutionary art systems that incorporate their own fitness functions. Most of these systems extract

quantifiable features from the images to evaluate their aesthetics. For example, one system looks

at how closely the image color distribution matches the color distribution of high rated Flickr

images [128]. Another system uses image compression to measure image complexity [105]. There

is also a system that performs a geometric assessment of regions within an image [66].

More advanced methods use a dynamic fitness function that changes based on the evolution-

ary environment. For example, DiPaola and Gabora designed a system with a fitness function that

utilizes two sets of features. The first is how closely the image in question matches a source image

and the second is how well the image follows several quantifiable rules of aesthetics. When the

evolutionary process becomes stagnant, the algorithm automatically adjusts the weight that it puts

on each set of features [46]. The co-evolutionary model designed by Greenfield is another example
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of a dynamic fitness function. In his model, the system co-evolves a population of images and a

population of image filters together. The fitness functions for each are parameterized by how the

two populations interact and thus change and fluctuate as if in an ecological environment [67].

Other systems attempt to directly model a human’s judgment of images as the fitness

function. Baluja et al. first attempted this by using an artificial neural network to model the aesthetic

preferences of specific users. The entire pixel space of each image was the input to the neural

network and for training data, Beluja used data collected from human evaluated evolutionary art

systems [4]. Beluja reported little success because the input space for such a sparse amount of

training data was enormous. Machado et al. incorporated a dynamic fitness function into their

NEvAr system using an artificial neural network model that evaluates the novelty of the system’s

artifacts [106]. The model is trained to distinguish between famous paintings and images created by

NEvAr itself. Instead of using the entire pixel space as done by Baluja, Machado used a finite set of

features extracted from each image as inputs to the neural network. If the system recognized an

image as its own style, it was rejected. Any new images created by the NEvAr system were then

continually fed back into the training data so as to force the system to constantly evolve and change

its own style.

None of these systems explicitly try to communicate an intended meaning to the viewer. By

contrast, our goal is to take this idea of a dynamic fitness function and tie it to language in a way

that allows the system to assess how well an image conveys a concept. To do this, the system needs

some notion of semantics.

1.2.2 Semantic Models

The study of computational semantics is a broad field with many applications in areas such as

information retrieval, machine translation, topic modeling, question answering, speech recognition,

and text summarization. Many of these areas define the notion of semantics in different ways and

build models specific to the individual tasks. In this dissertation, we will focus on the more general

notion of semantics and more general purpose models.
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The question of what gives words meaning has been debated for years; however, it is

commonly agreed that a word, at least in part, is given meaning by how the word is associated with

and used in conjunction with other words (i.e., its context) [51]. Many computational semantic

models consist of building associations between words, essentially forming a large graph that

is typically referred to as a semantic network or ontology. In cognitive psychology, meaning is

primarily based on memory, or our ability to recall general information about the world (referred to

as semantic memory or conceptual knowledge). Over the years, several computational models of

semantic memory have been developed based on two primary theoretical frameworks [152]. The

first is the hierarchical spreading-activation model of semantic memory described by Collins and

Quillian [22]. The second is the prototype model based on the work of Eleanor Rosch [140].

In the hierarchical spreading-activation model, concepts are organized into a semantic

network where concepts are connected together either hierarchically through is-a relationships (e.g.,

a robin is-a bird and a bird is-an animal), or connected through attribute relationships (e.g., a bird

can fly and a bird has feathers). This model provides a parsimonious means of knowledge storage

as well as a simple means of generalization. For example, the knowledge that all mammals have

hair can be stored by connecting the hair node to the mammal node with a has link. Has hair will

then generalize to any concept beneath the mammal node connected through the is-a relationship.

Empirical studies show some limitations in the strict hierarchical structure of the model, and so later

versions of the model allowed direct links between any pair of concepts, which used a spreading

activation method to search the network for information [23].

In the prototype model, items can be categorized into concepts based on how similar they

are to the prototypical example of each concept. For instance, a canary is more similar to a typical

bird than it is to a typical dog and can thus be categorized as a bird. In theory, this model seems to

match the way humans categorize objects [152]. However, this model does not address the issues

of what features should be used to judge similarity and how the exemplars of each category should

be chosen.
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The biggest limitation of these early models is that they had to be built by hand, which at

the time, made them impractical for use in real-world tasks. However, they did establish a pattern

for future models. For example, WordNet is a large English language lexical database in which

words are grouped together into synonym sets [55]. The noun synonym sets are then linked to

other synonym sets hierarchically through is-a relationships (called hypernyms, or hyponyms), and

include other attribute links (e.g., meronyms and antonyms). WordNet was created by language

experts and has been used extensively in many semantic and language processing applications.

Because handmade models are difficult to construct and limited in their scope, other models

have made use of crowd-sourcing to build larger semantic networks. Free association norms (FANs)

are word associations gathered by asking hundreds of human volunteers to provide the first word that

comes to mind when given a cue word [118]. FANs are able to capture many different types of word

associations, including word co-ordination (pepper, salt), collocation (trash, can), super-ordination

(insect, butterfly), synonymy (starving, hungry), and antonymy (good, bad). Cognitive psychologists

use FANs to study memory and language, and they are thought to accurately reflect how people

relate concepts and store lexical knowledge [118]. Furthermore, FANs are commonly thought to

represent important aspects of meaning [40]. Their use in computational models, however, has been

limited to simply being used in baseline metrics of comparison for other models.

ConceptNet is a semantic network created through various methods of crowd-sourcing [101].

Concepts are associated together using any type of link, including is-a, has, can, used-for, has-

property, and so on. ConceptNet has been used successfully in many applications primarily in the

domain of common sense reasoning [102]. However, despite the crowd-sourcing, ConceptNet is

still limited in its vocabulary, and it does not provide any notion of relationship strength between

concepts. Ultimately, the methods discussed so far are limited by having to depend on people to

construct word associations. Researchers have been looking for ways to automatically build millions

of associations without the need for human involvement.

Vector Space Models (VSMs) are a class of semantic models that use a large corpus to

automatically infer semantic information based on patterns of word co-occurrences [159]. They
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are also commonly referred to as Corpus-based Semantic Models (CSMs) [6], or Distributional

Semantic Models (DSMs) [5]. These models incorporate the idea that similar words will occur in

similar contexts and words that are often associated together will often co-occur close together [96].

VSMs have been successfully used on a variety of tasks such as information retrieval [143], multiple

choice vocabulary tests [43], multiple choice synonym questions from the TOEFL test [ 137], and

multiple choice analogy questions from the SAT test [158].

One of the most popular VSMs is Latent Semantic Analysis (LSA) [42]. LSA builds either

a term × document or a term × term matrix from a corpus and then performs Singular Value

Decomposition (SVD). SVD reduces the given large sparse matrix to a low-rank approximation

of that matrix along with a set of vectors, each representing a word (as well as a set of vectors for

each document). These vectors also represent points in “semantic space”, and the closer a word’s

vector is to another in this space, the closer they are in meaning (and the stronger the association

between words). For example, the words “dog” and “puppy” should have vectors that are close

together in semantic space because the two words are often used in similar situations in a corpus.

There are many variations of VSMs, and each is designed to succeed at specific tasks, but all of

them use the same basic idea as LSA. More sophisticated models try to include sentence structure

to provide additional semantic information [6]. Other models incorporate neural networks that

learn the global context of words and can thus represent multiple variations in meaning [ 81]. The

most state-of-the-art VSMs, however, try to build a single semantic model that can generalize and

perform well on a variety of semantic tasks [5].

Semantic Models and Visual Art

Semantic computing is a multidisciplinary field that deals with matching the semantics of any

kind of content (e.g., images, audio, text, services, hardware, etc) to language for the purposes of

retrieving, manipulating, or creating the content [146]. As previously mentioned, our goal is to

communicate meaning autonomously through visual art, which requires methods that associate

semantics with visual/image information. Image annotation (describing an image with words) and
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content-based image retrieval (finding images that match a word) are two major topics in computer

vision whose goal is to directly associate images with words automatically. These types of computer

vision problems are difficult and extensive research exists that attempts to solve them [103, 169].

These problems, in the general sense, are beyond the scope of this dissertation. We will, however,

consider simplified problems in this space that are more directly related to visual art as well as

methods for generating images based on natural language.

For example, a system that classifies digital art into five different genres (e.g., expressionism,

cubism, impressionism, pop art, and realism) was developed by Zujovic et al. [180]. This system

extracts both color and gray-scale features from images and then tests classification accuracy with

several different machine learning algorithms. Wang Wei-ning et al. developed an image retrieval

system that uses support vector machines to associate images with a set of 12 emotional word-

antonym pairs (e.g., happy-sad, warm-cool, clear-fuzzy, etc) [172]. This system uses a unique set of

image features customized for each word pair and is successful at improving retrieval results for the

12 specific emotional word pairs. Both of these systems could potentially be integrated with the

image generation systems discussed previously to create images that match one of the genres or

convey one of the emotional words.

Bruni et al. discovered a way to incorporate images (and other media) into vector space

models (VSMs) [17]. They hypothesized that large datasets of labeled images contain semantic

information, which can be extracted and combined with corpus data using techniques such as latent

semantic analysis. Bruni built a word × word co-occurrence matrix as usual from the corpus but

then added additional columns for visual words from the image dataset. Visual words are extracted

from an image (using SIFT), and the labels for that image are the words that co-occur with the

visual words from the image. At this point SVD can be applied to the word × word/visual word

matrix as with any VSM. Bruni successfully showed that labeled image datasets can be combined

with corpora to automatically build more complete semantic representations.

Semantic models have been incorporated into scene composition systems that automate the

tedious task of placing hundreds of objects into a 3D scene. Ken Xu et al. created a system that uses
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a hand-built semantic database to provide constraints on how objects can be oriented and placed in

relation to other objects [176]. Bob Coyne and Richard Sproat developed a system called WordsEye

that can take natural language descriptions of 3D scenes as input and automatically render them [34].

For example, the phrase “the black cat is on the chair” will automatically be rendered as a 3D scene

with a black cat sitting on a chair. WordsEye incorporates WordNet, various NLP methods, and a

finite set of spacial tags (i.e., object specific interpretations of spacial words like “on” or “under”) to

determine what, where and how to place objects into a scene.

The Story Picture Engine is a system developed by Dhiraj Joshi et al. that does automatic

text illustration [85]. The system uses information contained in WordNet to determine important

keywords from a piece of text. Joshi’s system then uses a combination of integrated region mapping

for image similarity, discrete state Markov chains, and mutual reinforcement-based ranking in order

to select relevant images that best represent the piece of text. Xiaojin Zhu et al. created a text-

to-picture pictorial communication system that automatically creates 2D collages that graphically

convey the gist of the text [179]. The system first analyzes the text using the TextRank algorithm

to retrieve keywords that also have high “picturability”. The system then uses a clipart database

and Google image search to select appropriate images that match the keywords. Finally, the system

uses conditional random fields to learn how to spatially arrange the pictures in a layout that best

communicates the gist of the text [64].

The last few years have shown a resurgence of deep neural networks (DNNs), especially

for computer vision tasks, where they hold current records for several vision benchmarks [52, 153].

Deep learning has the potential to significantly improve visually creative systems as well. A key

advantage of DNNs is that they are capable of learning their own image features, while the visual

art systems described above all rely on manually engineered features. DNNs have already been

used to generate images directly [45, 68, 97]. One particular method, called gradient ascent [147],

works by essentially using the DNN in reverse. The trained network starts with a random noise

image and tries to maximize the activation of the output node corresponding to the desired image

class. The network then backpropagates the error into the image itself (keeping the network weights

12



www.manaraa.com

unchanged) and the image is slightly modified at each iteration to look more and more like the

desired class.

Although these systems generate images with the purpose of expressing some meaning,

the images produced are not necessarily intended to be considered art, or the systems are merely

tools for an animator. In the case of deep learning, it has not yet gained traction in the field of

computational creativity. However, in this dissertation we argue for their use in creative systems

and incorporate several deep learning models into DARCI.

1.2.3 DARCI Background

The DARCI system was designed to autonomously produce visual art that conveys meaning

to the viewer, and the system subscribes to several of the philosophies of creativity described

in Section 1.2.1. Specifically, DARCI’s autonomous creation process is designed to adhere to

Colton’s creative tripod [24] and to produce visual art that satisfies Ritchie’s essential properties of

creativity [138].

The first leg of Colton’s tripod, appreciation, is the ability of the system to appreciate its own

artifacts (i.e., self-evaluation). Thus an important step was to design a component for DARCI that

can evaluate meaning in images to some degree. DARCI’s vocabulary was limited to adjectives and

thousands of training images were gathered that have been human-labeled with the adjectives that

they convey. Multiple neural networks (one for each adjective) were then trained to evaluate how

much an image conveys a particular adjective [121]. In order to train these neural networks, relevant

image features were discovered to extract from the images. These features had to be general across

multiple adjectives and be computationally tractable. Through several iterations of experiments, 51

low-level features were chosen that deal with color, lighting, texture, and basic shapes [127].

With the appreciation component in place, an image rendering component was developed

that uses an evolutionary algorithm to take an existing source image and discovers combinations

of Photoshop-like features that artistically modifies the image to be more like a particular adjec-

tive [123]. This genetic algorithm incorporates Colton’s two remaining legs of the tripod, skill
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and imagination, by giving DARCI the ability to artistically modify an image (skill), and by al-

lowing DARCI to explore and discover novel ways to modify an image to express an adjective

(imagination). The evolutionary algorithm is directed by a fitness function, which is DARCI’s

appreciation component that evaluates each generation of images to determine which ones best

convey a particular adjective. Through several iterations of DARCI, this genetic algorithm has been

improved, refined, and evaluated extensively [125, 126].

Additionally, prior work on DARCI has also been focused on evaluation, i.e., how does one

tell if DARCI is being successful in creating meaningful art? Thus, much research efforts have

focused on designing experiments, human surveys, and metrics to measure DARCI’s progress [123,

124, 126]. Prior to this dissertation, DARCI’s capabilities consisted of artistically modifying a pre-

existing source image to convey a list of adjectives, both provided by the user. In this dissertation,

we extend the DARCI system with more advanced semantic and perceptual abilities that allow it to

compose its own source image, to discover its own inspiration, and to create more sophisticated art

that conveys concepts beyond adjectives.

1.3 Contributions and Summary of Dissertation

There are many computational systems designed to generate visual art in some capacity and several

of them have produced beautiful and intricate artwork. However, DARCI is the only system that

can, in full autonomy, create visual art that explicitly conveys meaning. It is the only system of

its kind with a sophisticated cognitive model that gives it advanced perceptual abilities, gives it

broad semantic understanding, and that initiates and drives its creative process. Through designing,

implementing, and studying DARCI, we have developed evaluation methods, models, frameworks,

and theories related to the creative process that can be generalized to other domains outside of visual

art. Our work on DARCI has even influenced the visual art community through several collaborative

efforts, art galleries, and exhibits. Here we summarize the chapters that discuss each contribution in

detail.
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In Chapter 2 we outline this dissertation’s first version of the DARCI system in detail1. In

this iteration, DARCI takes a source image and an adjective as input and artistically modifies the

source image to reflect the adjective. We specifically emphasize the ability of the system to modify

images in a way that is consistent with the semantic relationships among the various adjectives. For

example, rendering an image for ‘scary’ should look more similar to rendering it for ’creepy’ than

to rendering it for ‘happy’ because ‘scary’ and ‘creepy’ are more similar in meaning than ‘scary’

and ‘happy’. In this chapter, we also introduce image clustering techniques for evaluating how well

DARCI’s images reflect the semantic relationships of their intended adjectives, which we use again

in Chapter 6. We show that DARCI is successful at generating images that convey their intended

meaning in ways consistent with semantic relationships.

In Chapter 3 we begin to develop a more advanced semantic model for DARCI based on

word associations2. Words are given meaning, in part, by their associations with other words. Thus,

by learning how words relate to other words, a system can perform advanced semantic tasks such as

answering word analogy questions, matching similar sentences, or playing online word games with

humans. We present a novel semantic model that combines word associations automatically learned

through written text, with word associations learned directly from humans. We evaluate this model

using an online word guessing game, similar to Catch Phrase, and show that our model performs

better than other pre-existing models.

In Chapter 4 we incorporate the semantic model from Chapter 3 into the DARCI system3.

This semantic model allows DARCI to generate novel images from scratch (no need for a source

image) and to generate images for any concept (not just adjectives). We input into the system

any arbitrary concept (e.g., ‘war’), and the system composes its own source image by retrieving

semantically related words from the semantic model, finding corresponding simple iconic images

1Derrall Heath, David Norton, and Dan Ventura, Conveying Semantics Through Visual Metaphor, ACM Transactions
on Intelligent Systems and Technology, 5(2):31, 2014

2Derrall Heath, David Norton, Eric Ringger, and Dan Ventura, Semantic Models as a Combination of Free
Association Norms and Corpus-based Correlations, Proceedings of the 7th IEEE International Conference on Semantic
Computing, pp. 48-55, 2013

3Derrall Heath, David Norton, and Dan Ventura, Autonomously Communicating Conceptual Knowledge Through
Visual Art, Proceedings of the 4th International Conference on Computational Creativity, pp. 97-104, 2013
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(representing those related words), then arranging those icons on the image as a collage. The

resulting source image is then rendered artistically based on the most semantically related adjective.

We use human surveys to evaluate the resulting images and show that DARCI can successfully

generate images that convey the meaning of concepts beyond adjectives. Another important

contribution is that we show that images that more accurately convey the intended concept are more

often liked and considered creative by human viewers. This reinforces the need for meaning and

intentionality for attributing creativity to a computational system.

Chapter 5 outlines a computational framework to facilitate imagination using vector space

models and associative memory models4. The idea is that the meaning of concepts can be partially

represented through vector space models (which encode semantic structure in high dimensional

vectors). Various perceptual domains (like visual art, music, recipes, etc) can then be associated

with these word vectors through associative memory models. Novel artifacts can then be ‘imagined’

and even generated by taking advantage of the semantic structure encoded in the word vectors. For

example, combining the word vectors for ‘happy’ and ‘scary’ could produce some novel blending

of those two concepts when the associative memory models are run in reverse. We developed

this framework based on cognitive theories of imagination in humans and demonstrate an initial

prototype.

In Chapter 6 we apply the framework from Chapter 5 to DARCI by incorporating a vector

space model and replacing the multiple adjective neural networks with a single model that learns

to associate images with entire adjective word vectors5. This allows DARCI to take advantage

of the semantic structure between words and render images according to adjectives on which it

was never explicitly trained. For example, DARCI could be trained on ‘scary’ and ‘dark’ images,

but not ‘creepy’ images. DARCI could then “imagine” what a ‘creepy’ image would look like

because ‘creepy’ is similar in meaning to ‘scary’ and ‘dark’. Even higher level concepts (e.g., ‘love’,

4Derrall Heath, Aaron Dennis, and Dan Ventura, Imagining Imagination: A Computational Framework Using Asso-
ciative Memory Models and Vector Space Models,Proceedings of the 6th International Conference on Computational
Creativity, pp. 244–251, 2015

5Derrall Heath and Dan Ventura, Creating Images by Learning Image Semantics Using Vector Space Models,
Proceedings of The Thirtieth AAAI Conference on Artificial Intelligence, 2016
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‘freedom’) can be partially conveyed through the images DARCI renders. We show that DARCI is

successfully able to “imagine” the visual qualities of adjectives that it has never previously seen.

In Chapter 7 we draw upon cognitive psychology, neuroscience, and art history to develop a

theory regarding the role that perception plays in the creative process6. We explore how percep-

tion has influenced human thought, imagination, and creativity and discuss how state-of-the-art

perceptual models (e.g., deep learning) can be used for imaginative and creative tasks. We demon-

strate several methods of generating novel images using deep neural networks and discuss their

implications for future creative systems.

In Chapter 8 we incorporate several deep learning models into DARCI to provide the

system with better perceptual abilities, which allow DARCI to create more semantically relevant

and visually pleasing images7. These enhancements also allow DARCI to evaluate and analyze

preexisting images in order to find inspiration for its art. We also give DARCI the capability of

generating titles and explanations for the art it creates, which enables human viewers to better

understand the creative decisions made by DARCI.

In Chapter 9 we outline several opportunities we have had to interact with and influence the

art community in conjunction with David Norton’s prior work on DARCI. In 2010 we collaborated

with Brigham Young University’s Visual Arts program, which culminated in an art exhibit, called

Fitness Function, curated by DARCI in the Harris Fine Arts Center at BYU. In 2011 we participated

in the Utah County Art Gallery: Fall Photography and Digital Art Show by having DARCI create

two submissions, one of which won 2nd place in the Digital Art category. Later that year, we put

on another version of Fitness Function in The High Museum of Art in Atlanta, Georgia, as part

of the 2011 ACM Conference on Creativity and Cognition . This event was covered by Studio 360

on Public Radio International8. DARCI also participated in the GECCO 2013 Evolutionary Art,

6Derrall Heath and Dan Ventura, Before A Computer Can Draw, It Must First Learn To See, Proceedings of The 7th
International Conference on Computational Creativity, to appear, 2016

7Derrall Heath, and Dan Ventura, Autonomously Conveying Inspiration In Visual Art Using Deep Neural Networks,
International Journal of Semantic Computing , to submit, 2016

8http://www.wnyc.org/story/designing-computer-great-taste/
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Design, and Creativity Competition held in Amsterdam and collaborated with Colton’s The Painting

Fool at a public event held in Paris in June 2013.
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Chapter 2

Conveying Semantics Through Visual Metaphor1

Abstract

In the field of visual art, metaphor is a way to communicate meaning to the viewer. We present a

computational system for communicating visual metaphor that can identify adjectives for describing

an image based on a low-level visual feature representation of the image. We show that the

system can use this visual-linguistic association to render source images that convey the meaning

of adjectives in a way consistent with human understanding. Our conclusions are based on a

detailed analysis of how the system’s artifacts cluster, how these clusters correspond to the semantic

relationships of adjectives as documented in WordNet, and how these clusters correspond to human

opinion.

1Derrall Heath, David Norton, and Dan Ventura, Conveying Semantics Through Visual Metaphor, ACM Transactions
on Intelligent Systems and Technology, 5(2):31, 2014
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2.1 Introduction

Metaphor can be a powerful method for communication. Metaphors are usually associated with

linguistics and research has been done in the AI community exploring the interpretation and

generation of metaphor within the linguistics domain [164, 165]. However, metaphor also exists in

the visual domain. Traditionally, the term visual metaphor is used to mean the representation of a

target concept by a different source concept [56]. The source replaces the target in the image and

can thus convey a new interpretation of the source concept or become a symbol for it. For example,

the concept of a dove is often used to represent the target of peace in images. In this example, peace

is an abstract concept and a dove is concrete; but, this does not always have to be the case. A visual

metaphor can be as simple as using an icon of an envelope to indicate access to email on a computer

terminal. Visual metaphor can be a powerful tool for conveying meaning in an image and has seen

effective use in art and advertising [16, 87].

We have developed a computer system, called DARCI (Digital ARtist Communicating

Intention), that is designed to autonomously create images that convey meaning. The value of visual

metaphor in such a system is apparent and is one of the design goals for this system. However,

automatic incorporation of visual metaphor in an image is nontrivial, requiring a rather mature

understanding of language as well as the ability to visually represent and recognize a word in

an image. As a step in this direction, DARCI currently only works with adjectives. Adjectives,

more easily than nouns and verbs, can be used to describe an image based on general features

such as color distribution, lighting, and repeating patterns. DARCI is presently designed to render

an image to communicate a list of specified adjectives using a variety of filters and other image

processing techniques. In effect, DARCI can express the meaning of adjectives visually in the

images it produces. Since DARCI cannot interpret or render nouns, implementing the traditional

view of conveying visual metaphor by replacing a target with a source is severely limited. In a

broader sense however, DARCI can represent an adjective, the target, as a unique filter, an abstract

source. This sense of visual metaphor does exist in human interaction. For example, the color red is

often used to denote danger. For brevity, throughout this paper we will refer to this broader sense of
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Figure 2.1: Overview of DARCI’s artifact creation process.

visual metaphor as simply visual metaphor. Though limited, this is an important first step in the

direction of conveying fully automated visual metaphor in the narrower, more traditional sense.

DARCI learns the meaning of adjectives, or rather adjective synonym sets—called synsets—

by building associations between low-level visual features and the synsets themselves using a series

of neural nets trained with human labeled data [121]. The process is augmented by taking advantage

of the synset relationships found in WordNet [55]. DARCI renders images by applying various

image filters to a source image (not to be confused with the source concept in visual metaphor). The

filter settings are learned with an evolutionary mechanism that is governed by the visual-linguistic

associations discovered by the neural nets [123]. Rather than the traditional approach to evolutionary

art where humans evaluate the products of each generation by hand [139, 145, 148, 156], the fitness

function is the output of these neural nets. Figure 2.1 outlines this process of creating artifacts.

While there are other approaches using automated and dynamic fitness functions in evolutionary

art [4, 46, 66, 67, 105, 128], none explore the communication of meaning as is done here with

DARCI.

In previous work we have shown a degree of success in both labeling and generating images

with respect to semantic content [121, 123]. However, analyzing the meaning contained in a

particular rendering is an inherently subjective task. Thus, we are interested in additional and more
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thorough approaches to analyzing the effectiveness of our system. Most of our previous evaluations

of DARCI have required the opinion of human volunteers. Unfortunately, using human judges in an

evaluation can be costly and highly variable. In this paper we explore an approach to evaluating

the system that does not require human interaction. Instead this approach analyzes the way images

produced by DARCI cluster and in turn how these cluster relationships correspond with synset

relationships found in WordNet. In order to validate our approach, we compare an agglomerative

clustering of DARCI’s images by their features to how human volunteers’ rankings of DARCI’s

images cluster. Each set of results provides evidence to support our claim that the system is capable

of expressing visual metaphor in the artifacts it produces.

We begin this paper by providing a detailed overview of DARCI’s algorithms as explained in

previous work. We then introduce the methodology for our new evaluation metrics that are the focus

of this paper. Next we describe the various experiments we ran with our evaluation methodology in

mind. Here we also analyze both how effective our new evaluation metrics are and how effective

DARCI is at using visual metaphor to communicate the meaning of adjectives in images. Finally

we draw conclusions and suggest future direction for this work.

2.2 System Overview

In previous work we have described and evaluated the various algorithms that operate within

DARCI [121, 123]. For convenience, in this section we reproduce those details necessary to

appreciate the results of this paper.

2.2.1 Visuo-Linguistic Association

In order for DARCI to make associations between images and their meaning, we present the

system with images that are labeled appropriately. For now, we have reduced descriptive labels

exclusively to delineated lists of adjectives. Also, since the raw feature space of a typical image

is intractable, we have selected 102 real-valued low-level image features to extract from each

image [121]. These features were selected based on prior research in the area of image feature
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extraction [39, 63, 90, 99, 170, 171] and include general measures of color, light, texture, and

shape [121]. Three of these features, for example, are the average RGB (red, green, and blue)

values of each pixel in an image. Because the magnitude of these 102 features varies dramatically

from feature to feature, we have standardized the image features using a core set of training images

(approximately 2000 diverse images). Throughout this paper, when we refer to image features, we

are referring to the standardized values.

We use WordNet’s [55] database of adjective synsets to give us a large set of descriptive

labels. Even though our potential labels are restricted to a single lexical category, the complete set

of WordNet adjective synsets can allow for images to be described by their emotional effects, most

of their aesthetic qualities, many of their possible associations, and even, to some extent, by their

subject.

To collect training data we have created a public website for training DARCI (http://darci.cs.byu.edu).

From this website, users are presented with a random image and asked to provide adjectives that

describe the image. When users input a word with multiple senses, they are presented with a list of

the available senses, along with the WordNet gloss, and asked to select the most appropriate one.

Additionally, for each image presented to the user, DARCI lists seven adjectives that it associates

with the image. The user is then allowed to flag those labels that are not accurate. This creates

strictly negative examples of those synsets, which will be important in the learning process.

Learning image to synset associations is a multi-label classification problem [157], meaning

each image can be associated with more than one synset. To handle multi-label classification, we

use a collection of artificial neural networks (ANNs) that we call appreciation networks. There is an

appreciation network for each synset that has a sufficient amount of training data. For the results

presented in this paper, that threshold is fifteen positive training instances. As we incrementally

accumulate more data, new neural networks can be dynamically added to the collection to accom-

modate the new synsets. As of writing this paper, there are 211 appreciation networks. This means

that DARCI essentially “knows” 211 synsets. The appreciation networks are trained using standard
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backpropagation and output a single real value, between 0 and 1, indicating the degree to which a

given image can be described by the networks’ corresponding synset.

ANNs require a lot of training data to converge. Currently, of the 211 synsets known to

DARCI, there are on average just over 33 positive data instances per synset. In order to enhance

the amount of positive and negative data used to train the appreciation network, we use antonym

relationships found in WordNet in addition to statistical correlations discovered in our data as

described in prior research [121].

2.2.2 Image Generation

DARCI uses an evolutionary mechanism to render images so that they visually express the meaning

of given synsets. Because of the innate ability of evolution to yield novel solutions to problems,

evolutionary methods are frequently used in generative art [61].

Our evolutionary mechanism operates in two modes. The initial mode, which we call

practice mode, operates by exploring the space of image filters that will render any image according

to a single specific synset. For this mode, DARCI creates a separate, persistent gene pool for each

synset that the system knows. The second mode, called commission mode, operates by exploring

the space of image filters that will render a specific image according to a specified list of synsets.

For this mode, users prescribe the image and list of synsets that they wish DARCI to render—in

other words, they “commission” DARCI. For each commission, DARCI creates a unique gene pool

that terminates once the commission is complete. The evolutionary mechanism for both modes

functions as follows.

The genotypes that comprise each gene pool are lists of filters (and their accompanying

parameters) for processing a source image. The processed image is the phenotype. Many of these

filters are similar to those found in Adobe Photoshop and other image editing software. Others

come from a series of 1000 filters that Colton et al. discovered using their own evolutionary

mechanism [29]. This set of filters, called Filter Feast, is divided into categories of aesthetic effect

that were discovered by exploring combinations of very basic filters within a tree structure. We
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Figure 2.2: Sample genotype (top) applied to a source image (left) resulting in the phenotype (right).
The genotype is a list of image filters with parameters. “Ripple” and “Weave” are the names of two
(of ninety-two) possible filters. Example image courtesy of William Meire.

have treated Filter Feast filters as if each category were a unique filter with a single parameter that

specifies the specific filter within the category to use. Figure 2.2 gives an example of a genotype

and its phenotype. There are a total of sixty-one traditional filters that we selected for DARCI to use

and a total of thirty-one categories of filters from Filter Feast, making ninety-two filters available

for each genotype. We selected traditional filters that were easily accessible, diverse, fast, and that

didn’t incorporate alpha values (since our feature extraction techniques cannot yet process alpha

values).

Every generation of the evolutionary mechanism, each phenotype is created from the same

source image; but, the source image used from generation to generation depends upon which mode

the system uses. In commission mode, the source image is the same from generation to generation,

while in practice mode the source image for each generation is randomly selected from DARCI’s

growing image database.

The function used to evaluate the fitness of each phenotype created during the evolutionary

process can be expressed by the following equation:

Fitness(fP ) = λAA(fP ) + λII(fP ) (2.1)
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where fP is the vector of 102 image features (see Section 2.2.1) for a given phenotype and

A : F P → [0, 1] and I : F P → [0, 1] are two functions: appreciation and interest. These functions

compute a real-valued score for a given phenotype (here, F P represents the set of all phenotype

feature vectors). λA + λI = 1, and for now, λA = λI = 0.5.

The appreciation function A is computed as the weighted sum of the output(s) of the

appropriate appreciation network(s), producing a single (normalized) value:

A(fP ) =
∑
w∈C

αwnetw(fP ) (2.2)

where C is the set of synsets to be portrayed, netw(·) is the output of the appreciation network for

synset w, and αw = 1/|C| (though this can, of course, be changed to weight synsets unequally). As

indicated, fP , the feature vector of the phenotype, is the input to each appreciation network.

The interest function I penalizes phenotypes that are either too different from the source

image, or are too similar. This can be expressed with the Equations 2.3 - 2.5 as follows:

n =
∑
i

σ(fSi , f
P
i ) (2.3)

σ(fSi , f
P
i ) =


0, |fSi − fPi | > 0.3

1, |fSi − fPi | < 0.3
(2.4)

where fSi represents feature i of the source image and fPi represents feature i of the phenotype. The

similarity threshold of 0.3 was chosen empirically. Equations 2.3 and 2.4 give a count, n, of how

many features between the phenotype and source image are similar. The interest score is calculated

using n as follows:

I(fP ) = 1−



τd−n
τd
, n < τd

n−τs
|f |−τs , n > τs

0, τd ≤ n ≤ τs

(2.5)

26



www.manaraa.com

Number of Sub-Populations 8
Size of Sub-Populations 15
Crossover Rate 0.4
Mutation Rate 0.1
Parameter Mutation Rate 0.9
Migration Rate 0.2
Migration Frequency 0.1
Tournament Selection Rate 0.75
Initial Genotype Length 2 to 4 filters

Table 2.1: Parameters used for the evolutionary mechanism.

where τd and τs are constants that correspond to the threshold for determining, respectively, when a

phenotype is too different from or too similar to the source image. The values τd = 20 and τs = 57

were used here. |f | is the total number of features analyzed (102). In effect, if there are between 20

and 57 image features that are similar between the source image and the phenotype in question (see

Equation 2.3), then the interest score for the phenotype is 1—the maximum score. Otherwise the

interest score will degrade according to Equation 2.5.

Our evolutionary mechanism for image generation operates similar to other standard genetic

algorithms. As such, there are several more components to the mechanism that require further

discussion including the phenotype selection process, crossover, mutation, and migration.

Fitness-based tournament selection determines those genotypes that propagate to the next

generation and those genotypes that participate in crossover. One-point “cut and splice” crossover

is used to allow for variable length offspring. Crossover is accomplished in two stages: the first

occurs at the filter level, so that the two genomes swap an integer number of filters; the second

occurs at the parameter level, so that filters on either side of the cut point swap an integer number

of parameters. By necessity, parameter list length is preserved for each filter. Table 2.1 shows the

parameter settings used.

Mutation rate is the probability that a mutation will occur in each genotype. Parameter

mutation rate is the probability that when a mutation occurs, it is a parameter mutation; otherwise,

it is a filter mutation. Filter mutation is a wholesale change of a single filter (discrete values),
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while parameter mutation is a change in parameter values for a filter (continuous values). When

a parameter mutation occurs, anywhere from one to all of the parameters (uniformly chosen) for

a single filter in a genotype are changed. The degree of this change, ∆li, for each parameter, i, is

determined by one of the following two equations chosen randomly with equal probability:

∆li = (1− li) · rand
(

0,
(|l|+ 1)− |∆l|

|l|

)
(2.6)

∆li = −li · rand
(

0,
(|l|+ 1)− |∆l|

|l|

)
(2.7)

Here, li is the value of parameter i prior to mutation, |l| is the total number of parameters in the

mutating filter, |∆l| is the number of changing parameters in the mutating filter, and rand(x, y) is a

function that uniformly selects a real value between x and y.

Because there are potentially many ideal filter configurations for modeling any given

synset, we have implemented sub-populations within each gene pool. This allows the evolutionary

mechanism to converge to multiple solutions, all of which could be different and valid. The

migration frequency controls the probability that a migration will occur at a given epoch, while the

migration rate refers to the percentage of each sub-population that migrates. Migrating genomes

are selected uniform randomly, with the exception that the most fit genotype per sub-population

is not allowed to migrate. Migration destination is also selected uniform randomly, except that

sub-population size balancing is enforced.

Practice gene pools are initialized with random genotypes, while commission gene pools are

initialized with the most fit genotypes from the practice gene pools corresponding to the requested

synsets. This allows commissions to become more efficient as DARCI practices known synsets.

It also provides a mechanism for balancing permanence (artist memory) with growth (artistic

progression).
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2.3 Evaluation Methodology

In order to evaluate DARCI’s artifacts more consistently and without direct human involvement, we

use a clustering algorithm to find the inherent groupings of the images. DARCI’s artifacts should

cluster in ways comparable to relationship clusters found within WordNet.

WordNet is an extensive ontology of the English language consisting of over 117,000

synsets, the basic unit of WordNet, and their relationships. Since individual words can have different

meanings, or senses, WordNet is not structured around the words themselves; rather, it is structured

around these meanings. A synset is a collection of different words that share the same meaning and

can be used interchangeably. For example “bright” and “smart” can mean the same thing and thus

together form one synset. Another sense of “bright” means the same thing as a sense of “brilliant”

and a sense of “vivid”. These form another distinct synset. In WordNet, all synsets are placed into

one of four part-of-speech categories: nouns, adjectives, verbs, and adverbs. This paper is primarily

concerned with the more than 18,000 adjective synsets.

Many of the relationships documented in WordNet can provide us with a measure of semantic

similarity between synsets. For adjectives, these relationships include adjective clusters, satellites,

antonyms, and related concepts. Most adjective synsets are contained in adjective clusters which

consist of two (rarely three) head synsets and their respective satellites. Antonyms are synsets that

are opposite in meaning and are commonly associated. The head synsets in an adjective cluster are

bound by an antonym relationship making the clusters polar groupings. The satellites of a cluster

are synsets similar in meaning to their respective head. Satellites are indirectly antonymous to the

opposing head satellites. Related concepts are synsets that do not belong to the same adjective

cluster, but share some similarity in meaning. As an example, Figure 2.3 shows the adjective cluster

for the antonym pair “peaceful” and “unpeaceful”.

Ideally, DARCI’s artifacts rendered with synsets that share the same satellite head should

tend to cluster more frequently than artifacts rendered with synsets that are only related concepts,

which should in turn cluster more frequently than artifacts rendered with more distantly related
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Figure 2.3: The adjective cluster for the antonym pair “peaceful/unpeaceful” as contained in
WordNet. “Peaceful” and “unpeaceful” are the head synsets. The synsets in ovals are satellites
while the synsets in rectangles are related concepts (technically not part of the adjective cluster).

concepts or concepts that are altogether unrelated, and so on. Unfortunately this ideal scenario

is not wholly practical due both to limitations inherent in WordNet, and to the complex nature of

meaning in images.

Since WordNet’s relationships are determined through a formal analysis of the language

by linguistic experts, they don’t necessarily agree with colloquial interpretations. For example,

in WordNet, “happy” and “sad” are not direct antonyms. The antonym of “sad” is “glad”, and

the antonym of “happy” is “unhappy” (in a distinct adjective cluster from “sad”). “Sad” and

“happy” do share related concepts that are antonyms, so there is an indirect connection between

the two adjectives. Still, this demonstrates a slight incongruity between commonly assumed

meanings (comprising DARCI’s hand-labeled training dataset) and meanings defined in WordNet.

Furthermore, WordNet’s related concepts are arguably not complete as illustrated by the fact that

they are not all bidirectional. For example, “glad” is a related concept of “happy”, but “happy” is

not a related concept of “glad”. Finally, certain terms that are technically semantically unrelated,

do have semantic connections in people’s minds. For example “warm” as in the temperature has

a distinctly different meaning than “warm” as in the use of color; however, people relate the two

because one suggests the other. WordNet does not usually include these connections.
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Despite these limitations, there is value in using WordNet to evaluate the way in which

DARCI’s artifacts are clustered. Having clusters that disagree with WordNet does not necessarily

indicate a failure in DARCI since arguably WordNet is not complete; however, agreeing with

WordNet does signify a degree of success since WordNet’s relationships are widely accepted, giving

us a somewhat objective measure of a quality that is inherently subjective.

We use the EM (Expectation Maximization) algorithm found in Weka [69] to cluster the

images with the same 102 low-level image features used to inform DARCI’s neural networks. These

features include general measures of color, light, texture, and shape [ 121]. For these experiments,

we specify the number of clusters to be equal to the number of adjectives that are present among the

images.

We perform two sets of experiments. In the first set, we analyze how the difference in

clustering quality between different groups of artifacts illustrates the expression of meaning in

the artifacts. In the second set of experiments, we show how the sequence in which images

agglomeratively cluster demonstrates the expression of meaning. In both sets of experiments,

DARCI produces images to be clustered using the evolutionary mechanism detailed earlier and in

prior work [123].

2.4 Results

We perform two groups of experiments to explore clustering as an evaluation of the expression

of semantics. In the first group, we analyze how DARCI’s artifacts cluster into specified sets of

adjective synsets. We explore different sets of synsets and examine the quality of the resulting

clusters. In the second group of experiments, we use agglomerative clustering to build a hierarchy

of DARCI’s visual metaphors using two different sets of features as data points. Finally, in order

to validate the agglomerative clustering results, we survey human volunteers by having them rank

image similarity.
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(a) cold (b) sad (c) grisly (d) creepy (e) scary

(f) fiery (g) happy (h) nonfigurative (i) lonely

Figure 2.4: Examples of images created by DARCI during practice using various source images.

2.4.1 Cluster Quality

For our first series of experiments we selected two sets of synsets, a distinct set and a similar

set. The distinct set contains five synsets that are either antonymous or conceptually unrelated

to each other according to WordNet: “cold”, “fiery”, “happy”, “nonfigurative” (as in abstract or

nonfigurative art), and “sad.” The similar set contains five synsets that are either conceptually related

according to WordNet, or similar in mood to one another: “creepy”, “grisly”, “lonely”, “sad”, and

“scary.” Both sets contain the same synset for “sad.” We began by creating a practice gene pool

for each synset belonging to these sets. We trained these gene pools for 100 generations and then

collected the most fit images created from the last 20 epochs of training. Example images from

each of the nine synsets are shown in Figure 2.4. We then performed EM clustering on each set’s

collection of images. Finally, we analyzed the resulting clusters.

Often clusters favored specific synsets; however, as there are variable source images, and

many ways for synsets to be legitimately expressed with DARCI’s rendering tools, clusters were

usually composites of multiple synsets. It is difficult to draw conclusions from these experiments by

simply looking at the breakdown of each cluster. However, we can see how the meaning of synsets

is present in DARCI’s artifacts by analyzing metrics obtained for each synset. We determined the
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F1 measure, precision, and recall for each synset in each cluster, and then isolated the best value

of each metric for the various synsets. The cluster that the best value comes from tells us which

cluster best represents each synset. The value itself tells us how well the synset is represented

by that cluster. Additionally, we calculated the average cluster entropy and average cluster purity

to determine how well the clustering matches the original adjective groupings. We repeated this

clustering experiment five times using newly created gene pools each time. Tables 2.2 and 2.3 show

the best F1 measure, precision, and recall, as well as average entropy and average purity, for the

distinct and similar sets of synsets averaged across the five experiments.

To help understand the results, consider as an example the adjective “cold” in Table 2.2.

The recall metric tells us that 57% of the “cold” images clustered together into one cluster (this

is the largest grouping of “cold”). The precision metric tells us that in that cluster, 64.5% of the

images were “cold.” The F1 measure is essentially the weighted average of precision and recall.

These metrics give us an overview of how well the images for each individual synset clustered.

The metrics entropy and purity tell us how well, as a whole, all the images clustered. For all the

metrics (except for entropy), the higher the value the better. It is clear that the distinct synsets have

consistently better scores than the similar synsets. This means that more confusion is occurring in

the synsets that are semantically more similar—the behavior we would expect in a system that is

expressing appropriate meaning in its artifacts.

We performed the same experiment using commissioned images rather than practice images.

Using the first of the practice gene pools for each synset just created, we commissioned DARCI

with three source images for each synset. Each commission was given 100 epochs to develop.

The top 40 images from each commission were collected making a total of 120 images per synset.

The empirical results of clustering these commissions are shown in Tables 2.4 and 2.5. Again, the

distinct synsets were more effectively clustered than the similar synsets as we would expect. It is

interesting to note that “nonfigurative” in Table 2.4 has a value of 1.000 for precision. This tells

us that there was a cluster where 100% of images it contained were “nonfigurative.” However, the
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F1 Precision Recall
cold 0.565 0.645 0.570
fiery 0.569 0.614 0.590
happy 0.651 0.578 0.760
nonfigurative 0.520 0.555 0.540
sad 0.660 0.705 0.660
AVERAGES 0.593 0.619 0.624

ENTROPY 0.567 PURITY 0.584

Table 2.2: Best F1 measure, precision, and
recall for each synset, as well as average en-
tropy and average purity, after performing
EM clustering on practice images for distinct
synsets. (Lower is better for entropy.)

F1 Precision Recall
creepy 0.398 0.458 0.490
grisly 0.409 0.377 0.480
lonely 0.448 0.708 0.460
sad 0.481 0.463 0.540
scary 0.557 0.538 0.600
AVERAGES 0.459 0.509 0.514

ENTROPY 0.752 PURITY 0.458

Table 2.3: Best F1 measure, precision, and
recall for each synset, as well as average en-
tropy and average purity, after performing
EM clustering on practice images for similar
synsets. (Lower is better for entropy.)

F1 Precision Recall
cold 0.784 0.987 0.650
fiery 0.429 0.362 0.525
happy 0.690 0.736 0.650
nonfigurative 0.717 1.000 0.558
sad 0.660 0.557 0.808
AVERAGES 0.656 0.729 0.638

ENTROPY 0.521 PURITY 0.623

Table 2.4: Best F1 measure, precision, and
recall for each synset, as well as average en-
tropy and average purity, after performing
EM clustering on commissioned images for
distinct synsets. (Lower is better for entropy.)

F1 Precision Recall
creepy 0.455 0.623 0.450
grisly 0.272 0.500 0.508
lonely 0.469 0.319 0.883
sad 0.429 0.292 0.808
scary 0.711 0.932 0.575
AVERAGES 0.467 0.533 0.645

ENTROPY 0.779 PURITY 0.445

Table 2.5: Best F1 measure, precision, and
recall for each synset, as well as average en-
tropy and average purity, after performing
EM clustering on commissioned images for
similar synsets. (Lower is better for entropy.)

recall metric then tells us that the cluster only contained 55.8% of the “nonfigurative” images. This

indicates that just over half of the “nonfigurative” images were particularly distinct.

These results verify those obtained from clustering the practice images. Comparing the

results of the commissioned images and the practice images, we see that the commissioned images

have better values than practice. This is likely because we started each commission with the practice

gene pools for each synset, which essentially gave the commissioned images a head start.

In preparation for the agglomerative clustering experiments, we added eleven synsets to the

nine outlined above (see Figure 2.6), and commissioned DARCI with the same three images for
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bright luminous 1 bright peaceful 7
grisly scary 1 creepy phantasmagoric 9
abstract nonfigurative 2 bright creepy -9
abstract phantasmagoric 5 creepy luminous -9
beautiful bright 6 beautiful creepy -5
beautiful luminous 6 creepy peaceful -5
nonfigurative phantasmagoric 6 happy sad -3
peaceful luminous 7 cold fiery -2

Table 2.6: A list of all synset pairs with a semantic distance magnitude less than 10. Synsets are
ranked from most similar to most opposite. Note that lower magnitude negative distance indicates a
stronger antonymous relationship.

each synset (again 100 epochs). An example commission from each of these 20 synsets for one of

the source images is shown in Figure 2.5. It should be noted that the adjective “abstract” in this

case means “abstract concept” and is thus in a slightly different synset than “nonfigurative.” The

synsets were selected to cover a spectrum of meanings with varying degrees of similarity while

also being well represented in DARCI’s training database. We then determined the number of

WordNet related concepts or antonymous relationships between each pair of synsets. We call this

value the semantic distance and represent positive relationships with a positive value and negative

relationships (antonymous relationships) with a negative value. This distance is defined to be a

value of 1 for synset pairs that share the same satellite head, and increases in magnitude by 1 for

every relationship link (related concept or antonym) crossed. In addition, every time an antonym

link is crossed, the distance changes sign. Table 2.6 shows all of the semantic distances between

pairs of synsets with a distance magnitude less than 10.

We took each pair of synsets listed in Table 2.6, and performed EM clustering over the

two synsets’ images. We then calculated the F1 measure, precision, and recall for each synset in

each pair, as well as the average entropy and average purity for each pair. Finally, we averaged the

metrics across the similar (positive semantic distance) and distinct (negative semantic distance) pairs
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(a) Abstract (b) Beautiful (c) Bright (d) Brilliant

(e) Cold (f) Creepy (g) Cryptic (h) Fiery

(i) Grisly (j) Happy (k) Lonely (l) Luminous

(m) Nonfigurative (n) Peaceful (o) Phantasmagoric (p) Sad

(q) Scary (r) Warm (s) Weird (t) Wet

(u) SOURCE IMAGE

Figure 2.5: A sample of commissioned results for the source image used in the clustering experi-
ments. The source image is courtesy of Jan Messersmith (http://www.messersmith.name).
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F1 Precision Recall Entropy Purity
similar 0.726 0.778 0.790 0.763 0.727
distinct 0.803 0.823 0.859 0.596 0.793

Table 2.7: The average F1 measure, precision, recall, entropy, and purity for similar pairs of synsets
and distinct pairs of synsets when binary clustering is applied. (Lower is better for entropy.)

of synsets. The results are recorded in Table 2.7. Yet again, the distinct pairs of synsets clustered

more effectively than the similar pairs of synsets.

2.4.2 Agglomerative Clustering

In these experiments we use agglomerative clustering based on the EM clustering algorithm and

centroids to see if related adjectives will group together before grouping with unrelated adjectives.

We performed agglomerative clustering on the 20 adjectives listed in Figure 2.6 in two ways: using

all 102 image features, and simplifying the feature space to just our 12 color and lighting features.

The original feature set is comprehensive, dealing with various aspects of color, lighting, texture,

and shape within an image. For comparison, the smaller set (of 12) uses only color and lighting

features, as they are predominately considered the most significant in image comparison research

[21]. To perform agglomerative clustering, we first cluster the images into the 20 adjective groups in

same way as done in Section 4.1. We then calculate the centroid of each resulting cluster. Note that

the centroid of each cluster is the average feature vector of all the images in each cluster. We then

decrement the number of clusters by one and recluster the new centroids. We repeat this process,

decrementing the number of clusters each time, until there are only two clusters.

The results for each clustering can be seen in Figure 2.6 and Figure 2.7. With few exceptions

(like “creepy” and “lonely”), the results of using all 102 features do not agree with the relationships

in WordNet, nor with intuition. The results from using only the color and lighting features are

considerably better. It is interesting to note that of the five semantically similar adjectives used in

the previous experiment, four of them (“creepy”, “lonely”, “grisly”, and “scary”) clustered together

before clustering with any other adjective. While the fifth one (“sad”), clustered with them before a
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Figure 2.6: Results of agglomerative cluster-
ing with 20 adjectives using all 102 images
features.

Figure 2.7: Results of agglomerative cluster-
ing with 20 adjectives using only 12 color
features.

majority of others. In contrast, the adjectives from the previous experiment that were semantically

dissimilar (“sad”, “happy”, “nonfigurative”, “fiery”, and “cold”), remain distinct far up the cluster

hierarchy.

2.4.3 Human Survey

To validate the clustering experiments just described, as well as to further evaluate DARCI’s

artifacts, we conducted a human survey. In this survey, we used the same images produced by

DARCI that were used in the agglomerative clustering experiment for one of the source images.

However, we limited the survey to only 10 of the 20 adjectives to avoid overburdening the users.

The adjectives in the survey were “happy”, “sad”, “cold”, “bright”, “scary”, “creepy”, “weird”,

“peaceful”, “luminous”, and “warm.” Recall that there are 40 images produced for each adjective

bringing the total to 400 images. In the survey we presented each volunteer with one of DARCI’s

400 images randomly chosen. This image acted as a representative for one of the 10 adjectives of

interest. Underneath this target image volunteers were shown additional random images (from these

400) for each of the 10 adjectives (in random order). There was no indication of which adjective

went with which image. Using a drag and drop interface, the volunteers were required to sort the 10

images below based on how well they thought these images matched the target image above. The
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Figure 2.8: An example screenshot of the human survey. The larger image on the top corresponds
to a particular adjective. Using a drag and drop interface, the ten smaller images below must be
sorted according to how well they match the visual style of the image above.

user repeated this process multiple times, each time with randomly chosen images. An example

screen-shot can be seen in Figure 2.8.

There were 70 people that participated in the survey, each completing rankings for, on

average, 8.3 target images for a total of 582 entries. Thus, each of the 10 adjectives had an average

of 58 entries where each entry consisted of a target image (corresponding with the adjective) and 10

ranked images ranked according to their similarity with the target image. For each adjective we

averaged the rankings of the 10 subordinate adjectives (1 being the closet match and 10 being the

worst) to determine, overall, how similar each adjective’s images were to each other. The results

can be seen in Table 2.8.

The first thing to notice is that all 10 adjectives are most closely matched with themselves.

This tells us that DARCI is consistent in rendering images that convey each adjective. It also tells us

that DARCI’s representation of each adjective is distinct from other adjectives. We can also see that

adjectives with similar meaning, such as “scary” and “creepy”, were consistently ranked closely
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Adjective Ranking (left to right)
bright bright, happy, peaceful, warm, scary, weird, sad, luminous, cold, creepy

cold cold, sad, creepy, scary, peaceful, weird, bright, warm, happy, luminous

creepy creepy, scary, sad, luminous, cold, warm, peaceful, weird, bright, happy

happy happy, peaceful, weird, bright, scary, luminous, warm, sad, cold, creepy

luminous luminous, warm, scary, creepy, happy, peaceful, bright, sad, weird, cold

peaceful peaceful, weird, happy, scary, sad, creepy, luminous, bright, cold, warm

sad sad, cold, creepy, scary, peaceful, weird, warm, happy, bright, luminous

scary scary, creepy, luminous, weird, peaceful, sad, bright, happy, cold, warm

warm warm, luminous, bright, sad, happy, scary, peaceful, cold, weird, creepy

weird weird, scary, peaceful, sad, happy, cold, creepy, luminous, bright, warm

Table 2.8: Results of the human survey. The adjective lists in the right column indicate the overall
ranking of similarity between images rendered with the indicated adjectives and images rendered
with the adjective in the left column.

to each other. Conversely, adjectives with dissimilar meaning, such as “happy” and “sad”, were

consistently ranked farther from each other.

To compare the results of the survey with our clustering results, we performed agglomerative

clustering on the survey data by using the average ranking as the distance metric between each

adjective. We also reran the agglomerative clustering algorithm on these same 10 adjectives using

the 12 color and lighting features. The results for each clustering can be seen in Figure 2.9 and

Figure 2.10.

With the exception of “cold”, “warm”, and “luminous”, the two clusterings are very similar

in how they cluster. In both cases, we can see that similar adjectives, like “scary”, “creepy”, and

“sad”, grouped together first. Likewise, we can also see that dissimilar adjectives, like “happy/sad”

and “warm/cold”, grouped far apart. This not only validates DARCI’s ability to convey distinct
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Figure 2.9: Results of agglomerative clus-
tering with 10 adjectives using the human
survey data.

Figure 2.10: Results of agglomerative clus-
tering with 10 adjectives using the 12 color
and lighting image features.

meaning in its artwork, but also validates the use of clustering algorithms as an objective metric

that can be used to evaluate DARCI’s artifacts. Note that in prior work we have done other human

surveys that evaluate how well images created by DARCI actually communicate the meaning of a

particular adjective compared to images created by human artists [123].

2.5 Conclusions

We have evaluated a system, DARCI, for using visual metaphor to communicate the meaning of

specified adjectives in the images it renders. The system learns how to label images with adjectives

and, in turn, to render them appropriately by training on eclectic human-labeled data. We have

shown that DARCI can produce artifacts that will cluster in ways that reflect the supplied adjectives’

relationships according to WordNet. In addition, according to human opinion, DARCI can depict

a distinct visual style for each synset the system renders. If we acknowledge that the meaning of

words can be at least partially expressed by their relationships to each other, then our results indicate

that DARCI is indeed learning how to visually convey the meaning of words. DARCI’s ability to

generate visual metaphor represents a unique stepping stone in the exploration of metaphor in AI.

We have also demonstrated a unique way to use clustering to evaluate the visual communi-

cation of meaning without direct human involvement. To validate this evaluation method, we have

shown that it favorably compares with human opinion. Such a metric may be useful in any research

interested in the empirical analysis of visual images.
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In the future, we will explore the possibility of generating visual metaphor with nouns in

addition to adjectives allowing for a more complete use of visual metaphor. This will require the

development of higher-level feature extraction methods when building visual-linguistic associations.

Further, adding nouns to DARCIs vocabulary suggests a close relationship to content-based image

retrieval research and may allow us to leverage techniques from that field.
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Chapter 3

Semantic Models as a Combination of Free Association Norms and Corpus-based

Correlations1

Abstract

We present computational models capable of understanding and conveying concepts based on word

associations. We discover word associations automatically using corpus-based semantic models

with Wikipedia as the corpus. The best model effectively combines corpus-based models with

preexisting databases of free association norms gathered from human volunteers. We use this model

to play human-directed and computer-directed word guessing games (games with a purpose similar

to Catch Phrase or Taboo) and show that this model can measurably convey and understand some

aspect of word meaning. The results highlight the fact that human-derived word associations and

corpus-derived word associations can play complementary roles in semantic models.

1Derrall Heath, David Norton, Eric Ringger, and Dan Ventura, Semantic Models as a Combination of Free
Association Norms and Corpus-based Correlations, Proceedings of the 7th IEEE International Conference on Semantic
Computing, pp. 48-55, 2013
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3.1 Introduction

Language is a critical component of human intelligence, and the development of computer systems

that can understand and communicate through language is an important problem in the field of

artificial intelligence. Building computational models that provide meaning to words is a step in

that direction. Most words are a representation of a concept, and it is the concept itself in which we

are interested and thus, the terms ‘concept’ and ‘word’ will be used interchangeably throughout the

paper.

The study of word meaning and conceptual knowledge is called lexical semantics (in

linguistics), semantic memory (in cognitive psychology), or cognitive semantics (in cognitive

linguistics). This question of what gives words meaning has been debated for years; however, it

is commonly agreed that a word, at least in part, is given meaning by how the word is used in

conjunction with other words (i.e., its context) [51, 96]. Many computational semantic models

consist of building associations between words [40, 152]. These word associations essentially form

a large graph that is typically referred to as a semantic network.

Word associations are commonly acquired in one of two ways: explicitly from people and

automatically by inferring them from a corpus. ConceptNet [101] and WordNet [55] are examples

of semantic networks that have been created explicitly by hand (or through crowd sourcing). In these

networks, words are linked by specific types of relationships that are often intended for specific

purposes. Although these networks have been applied to problems such as common sense reasoning

[102], they are often either limited in their vocabulary, limited in their variety of word associations,

or do not provide any notion of relationship strength.

Corpus-based semantic models (CSMs) are a class of computational models that attempt

to learn semantic information from patterns of word co-occurrences in a corpus. These models

are based on the idea that similar words will occur in similar contexts and words that are often

associated together will often co-occur close together. CSMs have been successfully used on a

variety of tasks such as information retrieval [143], multiple choice vocabulary tests [43], multiple
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choice synonym questions from the TOEFL test [137], and multiple choice analogy questions from

the SAT test [158].

Free Association Norms (FANs) are a common means of gathering word associations from

people and are considered to be one of the best methods for understanding how people, in general,

associate words in their own minds [118]. Thus, the corpus-based models are often compared

directly with FANs as a way to evaluate the quality of word associations discovered from corpora

[131, 168]. FANs are rarely used themselves to help solve word similarity tasks and exist only as a

baseline metric or to be analyzed directly by cognitive scientists.

Most CSMs have been applied to word similarity tasks such as the previously mentioned

multiple choice synonymy test and clustering words into predefined groups. However, it would be

beneficial for a semantic model to be able to determine a concept given a description of that concept

without multiple choice options. For example, if the model were given a description of a word, it

should be able to determine what that word is. Conversely, given a word, the model should be able

to provide a description of that word that makes sense to humans.

We introduce a new task that involves using CSMs to play word guessing games (similar to

Catch Phrase or Taboo) with people online. The idea is to evaluate how well a computer system that

uses word associations can understand and convey concepts to humans. These word guessing games

are designed for two purposes: for evaluation, and as a novel way of collecting new viable word

associations. Thus, these guessing games are also contributions to the growing field of Games with

a Purpose [166]. We play these word guessing games using Free Association Norms, using three

common CSMs, and using a hybrid approach combining FANs with CSMs. We show that using a

hybrid approach improves the ability of the system to play these guessing games and therefore can,

at least partially, convey meaning to humans.

We will first describe our methodology in using FANs and our method for building the

three CSMs used in this paper. We will then outline the initial experiments and results used to

evaluate the models. Finally, we will detail the online word guessing game and discuss the results

and applications.
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3.2 Methodology

We want to create a system that can communicate and understand concepts. Given a concept, we

want the system to provide a description that will enable a human to know what the given concept

is. Conversely, given a description, we want the system to know to which concept the description is

referring. For example, suppose the given concept is ‘space’, the system could provide a description

in the form of other words associated with ‘space’ such as ‘planet’, ‘astronaut’, ‘star’, ‘rocket’,

‘dark’, and ‘mysterious’. Conversely, if the system is given a collection of words as a description

such as ‘soldier’, ‘guns’, ‘bomb’, ‘death’, ‘fight’, ‘sorrow’, and ‘courage’, then the system should

infer that the collection of words most likely represents the concept ‘war’.

We use the term ‘description’ here to mean ‘a collection of other words’. In this paper we

are not concerned with how words are structured together. We acknowledge that structuring of

sentences, relationship types, and word order contribute to the meaning of concepts. Indeed much

of the recent work on CSMs deal with trying to automatically infer additional semantic information

such as word order, sentence structure, and word relationship types [5, 6, 84]. However, we are

interested in the degree to which simple word associations can accomplish the task at hand and

leave these more advanced CSMs to future work.

We present a computational semantic model that combines human free association norms

with common corpus-based approaches. The idea is to use the FANs to capture general knowledge

and then fill in the gaps using a CSM. Here we describe each individual model, initial testing results,

and how the individual models will be combined.

Lemmatization and Stop Words

We use the standard practice of removing stop words (words like ‘the’ and ‘of’) and lemmatizing

(representing different forms of the same word with the word’s morphological lemma) as we build

word associations. WordNet maintains a database of word forms and hence, we use WordNet to

perform the lemmatization [55]. It should be noted, however, that lemmatization with WordNet

has its limits. For one, we cannot lemmatize a word across different parts of speech (noun,
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verb, adjective, etc). For example, ‘redeem’ and ‘redeeming’ will remain separate words because

‘redeeming’ could be the gerund form of the verb ‘redeem’ or it could be an adjective (i.e., ‘a

redeeming quality’). Since the part of speech is not provided for individual words encountered, we

must account for all parts of speech, hence words like ‘relax’, ‘relaxing’ and ‘relaxation’ remain

separate words.

3.2.1 Free Association Norms

We use two preexisting databases of human word associations: The Edinburgh Associative The-

saurus [91] and University of Florida’s Word Association Norms [118]. These databases were built

by asking hundreds of human volunteers to provide the first word that comes to mind when given a

cue word. This technique, called free association, is able to capture many different types of word

associations including word co-ordination (pepper, salt), collocation (trash, can), super-ordination

(insect, butterfly), synonymy (starving, hungry), and antonymy (good, bad).

We build a semantic model from this data as follows: The association strength between two

words is simply a count of the number of volunteers that said the second word given the first word.

We also consider word associations to be undirected. In other words, if word A is associated with

word B, then word B is associated with word A. Hence, when we encounter data in which word A

is a cue for word B and word B is also a cue for word A, we combine them into a single association

pair by adding their respective association strengths. Between these two databases, there are a total

of 19,310 (lemmatized) unique words and 288,069 unique associations. From now on, we will refer

to this model as FANs.

3.2.2 Corpus-based Semantic Models

One of the most popular CSMs is Latent Semantic Analysis (LSA) [42, 96]. LSA is based on the

idea that similar words will appear in similar documents (or contexts). LSA builds either a term×

document or a term × term matrix from a corpus and then performs Singular Value Decomposition

(SVD), which reduces the given large sparse matrix to a low-rank approximation of that matrix
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along with a set of vectors, each representing a word (as well as a set of vectors for each document).

These vectors also represent points in semantic space, and the closer a word’s vector is to another in

this space, the closer they are in meaning (and the stronger the association between words). Starting

with a term× term matrix is considered advantageous because the size of the matrix is invariant to

the size of the corpus. It is also argued by some that it is more congruent to human cognition than

the term × document matrix used in some implementations of LSA [18, 168]. We implement the

same version of LSA that is used in [137], which uses a term × term matrix and a co-occurrence

window of ±2.

Another popular method is the Hyperspace Analog to Language (HAL) model [104]. This

model is based on the same idea as LSA, except the notion of word order is partially captured

in the co-occurrence matrix (with a co-occurrence window of ±10), and HAL then uses the co-

occurrence counts directly as vectors representing each word in semantic space. We use the same

implementation as specified in the original paper [104].

The third CSM we use is constructed from the direct co-occurrence counts (DCC) obtained

from the corpus. We build a term × term co-occurrence matrix M using a co-occurrence window of

±30. To account for the fact that common words will have generally higher co-occurrence counts,

we scale these counts by weighting each element of the matrix by the inverse of the total frequency

of both words at each element. This is done by considering each element Mi,j , then adding the total

number of occurrences of each word (i and j), subtracting out the value at Mi,j (to avoid counting it

twice), then dividing Mi,j by this computed number, as follows:

Mi,j ←
Mi,j

(
∑
i
Mi,j +

∑
j
Mi,j −Mi,j)

(3.1)

The result could be a very small number and hence, we then also normalize the values between 0

and 1. Once the co-occurrence matrix is built from the corpus, we use the weighted/normalized

co-occurrence values themselves as association strengths between words.
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AllQ VocabQ AssocQ
FANs 0.300(24/80) 0.511(24/47) 0.923(24/26)
HAL 0.388(31/80) 0.660(31/47) 0.660(31/47)
DCC 0.438(35/80) 0.745(35/47) 0.745(35/47)
LSA 0.513(41/80) 0.872(41/47) 0.872(41/47)
DCC2 0.738(59/80) 0.747(59/79) 0.747(59/79)
LSA2 0.888(71/80) 0.899(71/79) 0.899(71/79)
FAN-LSA2 0.900(72/80) 0.911(72/79) 0.911(72/79)

Table 3.1: The TOEFL synonym test scores for the different models. AllQ is the raw score for all
80 questions. VocabQ is the score based on the limited vocabulary and AssocQ is the score based
on existing associations in each model. LSA2 uses an extended vocabulary and performs the best
when combined with FANs (FAN-LSA2). FANs performs the best when there exists an association.

Note that the DCC model only captures first order relationships between words, while HAL

and LSA capture higher order relationships. That is to say, DCC will only associate words that

co-occur often (e.g., ‘dog’, ‘kennel’), while HAL and LSA can associate words that co-occur with

similar words even if those words never co-occur directly (e.g., ‘dog’, ‘puppy’). For each of the

models (LSA, HAL, and DCC), we use the Wikipedia corpus as it is large, easily accessible, and

covers a wide range of human knowledge [44]. Initially, for comparison we limit the vocabulary to

the same 19,310 (lemmatized) words that exist in the FANs database.

3.2.3 TOEFL Synonymy Test

We take a detour to conduct an initial test to compare the performance of each model on the standard

TOEFL multiple choice synonym test [96]. We consider three versions of the results. The first is

simply the number of questions correctly answered out of the 80 total questions (AllQ). The second

is limited to only the questions in which the word being considered and the correct answer exist

in the vocabulary (VocabQ). The third is limited to only the questions in which the model has an

association between the word being considered and the correct answer (AssocQ). Note that if a

model cannot answer the question, it is counted as wrong; we do not adjust the score for random

guessing. The results for FANs, HAL, DCC, and LSA can be seen in the first four rows of Table 3.1.

The first thing to note is that for all questions (AllQ), the four models perform poorly (the

human standard for actual TOEFL test takers is 0.645). The obvious reason for the poor results is
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that the vocabulary is limited to the 19,310 lemmatized words. When throwing out questions that

are not in the vocabulary (VocabQ), the scores improve considerably. The vocabulary for the CSMs

can be easily expanded and since LSA and DCC perform the best, we expand their vocabulary to

43,578 lemmatized words, called LSA2 and DCC2. When we do this, the TOEFL scores for AllQ

are increased to 0.888 and 0.738 respectively. LSA2’s score is comparable to previous TOEFL

results for this implementation of LSA, which achieved a score of 0.925 (the differences likely due

to different corpus, and not accounting for random guessing) [137].

FANs perform the worst except when considering only questions in which an association

score between the words exists (AssocQ). The AssocQ scores for the three CSM models are the

same as the VocabQ scores because a similarity score can be computed between any pair of words.

FANs are limited in their number of associations because obtaining them is a tedious process of

receiving input from people. However, when an association does exist, FANs achieve the best score

of 0.923.

We can use the FANs to augment the LSA2 model and build a hybrid model (FAN-LSA2)

that improves the results (see last row in Table 3.1). FAN-LSA2 simply defers to the FANs model

first and if no association exists between the words in question, then the LSA2 model is used.

3.2.4 Combining Models

From the TOEFL test we can see that FANs and CSMs have different strengths and weaknesses.

FANs are limited in vocabulary, are limited in the number of associations between words, and are

difficult to acquire. However, the associations that do exist are meaningful and they capture the most

relevant associations. CSMs, on the other hand, can automatically discover associations with a large

vocabulary, but it is difficult to tell how meaningful the associations are. Other studies have shown

that FANs and CSMs each provide different types of word associations [168]. A combination of

these methods into a single model has the potential to take advantage of the strengths of each method,

as indicated by the improved performance of FAN-LSA2 in the TOEFL test. The hypothesis is that
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the combined model will better communicate meaning to a person than either model individually

because it presents a wider range of associations.

Combining Method

This method merges two separate databases of word associations into a single database before query-

ing it for associations. This method assumes that FANs contain more valuable word associations

than the CSMs because FANs are typically used as the gold standard in the literature. However,

CSMs do contain some valuable associations not present in the FANs. The idea is to add the topn

associations for each word from one of the CSMs to the FANs but to weight the association strength

low. This is beneficial for two reasons. First, if there are any associations that overlap, adding

them again will strengthen the association in the combined database. Second, new associations not

present in the FANs will be added to the combined database and provide a greater variety of word

associations. We keep the association strength low because we want the CSM data to reinforce, but

not dominate, the FANs.

We first copy all word associations from the FANs to the combined database. Next, let W be

the set of all unique words in the vocabulary, let Ai,n ⊆ W be the set of the top n words associated

with word i ∈ W from the CSM, let scorei,j be the association strength between words i and j

from the CSM, let maxi be the maximum association score present in the FANs for word i, and let

θ be a scaling factor. Now for each i ∈ W and for each j ∈ Ai,n, the new association score between

words i and j is computed as follows:

new scorei,j ← (maxi · θ) · scorei,j (3.2)

This equation scales scorei,j (which is already normalized) to lie between 0 and a certain

percentage (θ) of maxi. The n associated words from the CSM are then added to the combined

database with the updated scores (new scorei,j). If the word pair is already in the database, then

the updated score is added to the score already present. For the results presented in this paper we

use n = 20 and θ = 0.2, which were determined based on preliminary experiments.
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Figure 3.1: User interface for the user guess mode. On the left the user attempts to guess the
concept the system is trying to communicate through the word associations on the right.

3.3 Word Guessing Game

The models are evaluated by playing a word guessing game called Wordlery (similar to Catch

Phrase or Taboo), which is accessed through an online interface (http://darci.cs.byu.edu/Wordlery/).

There are two modes: one in which the user must guess the word (user guess) and one in which

the system (or model) must guess the word (system guess). In the user guess mode, the system

presents the user with a set of eight words. The user then has seven chances to guess the concept

that the words represent. We record whether or not the user is able to guess the word and how many

guesses it took. Figure 3.1 shows the user interface for user guess mode. The eight words presented

by the system (on the right in the figure) are the top n word associations for the hidden word, where

n = 8. This mode is similar to one of the evaluation metrics used in another study, in which human

volunteers had a single chance to guess the word that generated a list of associated words [104].

In the system guess mode, the user is presented with a word/concept and can then provide

up to seven other words one at a time as clues to the system. Figure 3.2 shows the user interface

for this mode. After each word provided by the user (on the left), the system gives its current

guess (on the right along with its previous guesses) until either it guesses the correct word or the
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Figure 3.2: User interface for the system guess mode. The system attempts to guess the concept
(‘food’) from user provided word association clues on the left.

Figure 3.3: A simplified example of how the model guesses a concept given a set of words. The
words on the left are the user-provided clues, while the words to the right of the arrows are the
lists of associated words for each clue, with their association strength. The system then sorts the
associated words by their frequency (the number of different “clue-relation” lists in which a word
appears), then by their total association strength. The top word is returned as the guess.

number of allotted clues has been reached. System guesses are generated in a few simple steps.

First, the system retrieves the words associated with each user-provided clue. Second, for each

associated word retrieved, the system counts the number of user-provided words with which it is

associated. The system also sums the association strengths between each associated word and each

of the user-provided clues for a total association strength. In the third step, the system ranks the

associated words first by their frequency, then by their total association strength. Finally, the top

word (that hasn’t already been guessed) is returned. See Figure 3.3 for an example of this process.
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1 Guess/Clue HAL DCC DCC2 LSA LSA2 FAN FAN-DCC FAN-DCC2 FAN-LSA FAN-LSA2
Overall 0.063 0.186 0.188 0.178 0.171 0.329 0.347 0.353 0.344 0.344
User guess 0.081 0.146 0.145 0.173 0.165 0.295 0.314 0.313 0.311 0.311
System guess 0.045 0.227 0.231 0.182 0.178 0.364 0.380 0.392 0.377 0.378

7 Guesses/Clues HAL DCC DCC2 LSA LSA2 FAN FAN-DCC FAN-DCC2 FAN-LSA FAN-LSA2
Overall 0.153 0.374 0.365 0.381 0.368 0.563 0.578 0.577 0.582 0.589
User guess 0.196 0.315 0.309 0.349 0.346 0.499 0.508 0.509 0.515 0.527
System guess 0.111 0.433 0.421 0.413 0.391 0.627 0.649 0.645 0.649 0.650

Table 3.2: The win/loss record for several semantic models for each mode of the Wordlery game
(higher is better). The combined models perform the best for each mode of the game. This table
corresponds to the results in Figure 3.4.

Figure 3.4: The win/loss record for several semantic models for each mode of the Wordlery game
(higher is better). The combined models perform the best for each mode of the game. This chart
corresponds to the data in Table 3.2.

At each round of the Wordlery game, the system randomly selects a word from the vocabulary

of available words. The system then randomly selects a mode, either user guess or system guess.

Finally, the system randomly selects one of the semantic models being evaluated, and the word

guessing game is played by the user. To evaluate the effectiveness of each method we use the

win/loss record, or the proportion of games in which the correct word was guessed to the total

number of games played. We consider the win/loss record allowing all seven guesses/clues as well

as the win/loss record allowing for only the first guess/clue.

In addition to evaluation, another purpose for playing these word guessing games is to

provide a new method for gathering word associations from people. In the system guess mode, the

user provides clue words that are associated with the given word and each word entered is saved in

a separate database as being associated with the given word. The idea is to gather word associations
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that more accurately reflect how a person thinks about a concept as opposed to simply the first other

word that comes to mind as is done with FANs. We have opted to not save any word associations

for the user guess mode as user guesses tend to be more inconsistent, especially when the user has

no definite idea of what to guess.

There exist other online games for the purpose of collecting semantic information from

people. For example, a game calledWikispeedia is an online game for inferring semantic distances

between concepts [174]. Wikispeedia is played by randomly selecting two unrelated Wikipedia

articles and having the user reach one of the articles from the other by clicking through hyperlinks in

the articles encountered. The path the user takes is analyzed to derive a semantic distance between

the concepts represented by the starting and ending articles.

3.4 Results

Initially over 2500 games were played by a variety of anonymous individuals through the online

interface. This resulted in 7868 word associations gathered from the game. This data provides a

snapshot of how people play the online game, and we can use this data to objectively evaluate the

models by having each model play against the collected data (reenacting the human input). We first

evaluate several variations of the models using this collected data. We then select the best models

from this initial phase and have them play against humans.

3.4.1 Wordlery with Collected Data

We randomly selected 1500 unique words from the collected database and had each model play both

modes of the word guessing game using the collected data to simulate the human input. Table 3.2

and Figure 3.4 shows the results for FANs, DCC, DCC2 (extended vocabulary), HAL, LSA, and

LSA2 (extended vocabulary) as well as the results for the combination of FANs with DCC, DCC2,

LSA, and LSA2 (named FAN-DCC, FAN-DCC2, FAN-LSA, and FAN-LSA2).

When considering only the individual models, FANs perform the best by a considerable

margin, as expected, since this version of the game consists of simulating real human responses.
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However, all the combined models perform better than the FANs. This shows that combining FANs

and CSMs successfully takes advantage of their respective strengths. Surprisingly, increasing the

vocabulary size (for LSA and DCC) has very little influence on the performance of the CSMs. This

result is likely due to the fact that people tend to provide more common words as guesses/clues.

These common words are likely to be included in the 19,310 words from the smaller vocabulary,

and extending the vocabulary makes little difference.

Another surprising result to note is that DCC performs slightly better than LSA for the

system guess mode and the FAN-DCC combination performs slightly better than the FAN-LSA

combination for both modes of the 1st guess version of the game. This suggests the possibility

that the 1st order word correlations that DCC captures (e.g., ‘dog’,‘kennel’) are better than (or at

least comparable to) the higher order word correlations that LSA captures (e.g., ‘dog’,‘puppy’)

for this type of semantic task. The differences are not significant, and LSA has the edge for the

7 guesses version of the game, but the suggestion is there. Most semantic tasks in the literature

deal with semantic similarity (like the TOEFL test), in which models like LSA usually perform

well because they explicitly try to capture word synonymy/similarity. The word guessing game

requires the ability to come up with an answer (free response) as opposed to multiple choice, which

additional types of word associations (beyond just synonymy) can help facilitate.

3.4.2 Wordlery with People

We selected FANs, DCC, LSA, FAN-DCC2, and FAN-LSA2 to play Wordlery with people online

since they represented the top models from the collected data experiments. Approximately 900

games were played by a variety of anonymous individuals through the online interface. On average,

each of the five semantic models participated in 180 of the total rounds played. Table 3.3 and

Figure 3.5 shows the results for the overall win/loss record, the user guess win/loss record and the

system guess win/loss record.
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1 Guess/Clue DCC LSA FANs FAN-DCC2 FAN-LSA2
Overall 0.232 0.325 0.354 0.440 0.418
User guess 0.421 0.472 0.577 0.576 0.511
System guess 0.089 0.113 0.161 0.296 0.308

7 Guesses/Clues DCC LSA FANs FAN-DCC2 FAN-LSA2
Overall 0.678 0.656 0.756 0.837 0.811

User guess 0.684 0.607 0.722 0.812 0.728
System guess 0.673 0.726 0.786 0.864 0.910

Table 3.3: The win/loss record for each of the five semantic models for each mode of the Wordlery
game (higher is better). The FAN-DCC2 model performs the best overall, while FAN-LSA2 is a
close second. However, FANs performs better on the single guess User guess mode. Underlined
scores denote statistical significance compared to the FANs model using the z proportionality test.
This table corresponds to the results in Figure 3.5.

The first thing to note is that, overall, the FAN-DCC2 model achieves the best win/loss

score (for both 1 guess and 7 guesses). The FAN-LSA2 model performs second best, with FANs

not far behind. The CSMs (LSA and DCC) by themselves are significantly inferior to the FANs

and combined models. The FANs do well presumably because those associations come directly

from humans and hence can convey concepts back to human players. The combined methods

take advantage of those human associations and then supplement them with the corpus inferred

associations, which results in better performance. However, when allowing for only one guess on

the the User guess mode, FANs perform the best. We note again that the DCC-based models slightly

outperform (or are close to) the LSA-based models on the user guess mode, which promotes the

usefulness of 1st-order correlations for certain semantic tasks such as this game.

When allowing for all 7 guesses/clues, the User guess scores are generally lower than

System guess which suggests that, of the two modes, user guess is harder. This makes sense since

this mode only provides a static set of words as clues from which the user has to make a finite

number of guesses. The interactive nature of the System guess mode is likely one of the reasons

for the better performance. However, the reason could also be that humans are good at providing

relevant words as clues. Hence, we are collecting these word/clue pairs provided by the users for

future studies. Perhaps the user guess mode could be enhanced to allow the system to adapt its

clues based on the user’s guesses as one might do in a human-human game. Note that when only 1
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Figure 3.5: The win/loss record for each of the five semantic models for each mode of the Wordlery
game (higher is better). The FAN-DCC2 model performs the best overall, while FAN-LSA2 is a
close second. However, FANs performs better on the single guess User guess mode. This chart
corresponds to the data in Table 3.3.

guess/clue is allowed, the scores for the System guess mode are very low. This is expected since the

model is allowed only a single guess based on one clue, for which the FAN-LSA2 and FAN-DCC2

models performs the best by a significant margin.

3.5 Applications

The results of these games show that word associations can convey some aspect of the meaning of

words. Such associations allow the system to communicate concepts to humans and allow humans to

communicate concepts to the system, which is an important step in building a computational model

that is capable of understanding language, processing input, making decisions, and interacting with

people.

For example, in information retrieval, a user may not know what word to use in a query. The

user could formulate a query using other words that describe (i.e., are associated with) the concept.
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DCC LSA FANs FAN-DCC2 FAN-LSA2 Human
Score 0.09 0.15 0.18 0.18 0.18 0.41

Table 3.4: The results for determining the correct word given only its definition (higher is better).
The low scores confirm the difficulty of the task.

In the query expansion process, the system could then automatically infer the concept and provide

search results accordingly with possible improvements to both recall and precision.

To provide another example, and as an additional experiment, we randomly selected 100

word definitions from a dictionary. The system tokenized each definition into individual words

(ignoring stop words), which essentially became “clue” words for the definition’s corresponding

word. Using the same method as in the System guess mode of the Worldery game, each semantic

model had to guess the word (or a synonym) that corresponded to each definition (allowing only

one guess). For a baseline comparison, a couple of human volunteers performed the same task for

all 100 definitions. Table 3.4 shows the results for the same models used in the Wordlery game and

the average score for the human volunteers.

Keep in mind that the purpose of this experiment is not for rigorous testing but is a proof of

concept to demonstrate a difficult task that requires semantic modeling. Even the human volunteers

were not able to correctly determine the word for nearly 60% of the definitions. Although the

semantic models performed relatively poorly, they do show potential. The ability of a computer

system to recall a concept given a description shows some level of language understanding. On a

larger scale this is analogous to topic modeling. For example, instead of the system answering the

question, “to what is this definition referring?”, it could answer the question, “what is this document

about?”.

Future applications could go beyond word-to-word associations and build associations

between words and other objects (such as images), which can potentially expand the ability of the

system to communicate and understand meaning in a variety of ways. For example, we plan to

build a system that is capable of communicating ideas through visual art. For a concept such as
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‘freedom’ the system will use the word and image associations to automatically compose an image

that conveys the meaning of ‘freedom’ to the viewer.

3.6 Conclusions

We have experimented with two methods for obtaining word associations: through human free

association norms (FANs) and by inferring them from a corpus (CSMs). We have also introduced a

new semantic task to evaluate word associations by playing word guessing games. We compare the

word associations from these methods and conclude that the FANs generally provide better quality

associations than CSMs alone. Obviously, corpus-based approaches are heavily dependent on the

corpus used. In future work, this influence could be assessed by evaluating word associations using

the word guessing game from a variety of corpora. Our findings seem to be consistent with other

studies that also show the superiority of FANs [131, 168]. It would seem that a universal corpus

would be needed to discover word associations that are of the same quality as free association norms.

But does a universal corpus exist? Or is it possible to create a model that can extract quality word

associations from a standard corpus such as Wikipedia?

We have outlined a way to combine FANs with corpus-based semantic models. We use

the word guessing game to show that combining the two methods of forming word associations

is superior to each of the methods in isolation. This tells us that the CSMs have value and can

complement the FANs. Perhaps for domain-specific tasks, preexisting databases of free association

norms could provide a core of common human knowledge, while a domain-specific corpus and a

CSM could be used to enhance the associations.

The word guessing games also provide a new way of gathering word associations from

people. Once enough data has been collected, we will reevaluate the associations generated from the

game comparing them with free association norms to see if they provide better quality associations

for communicating meaning. In future work, we intend to incorporate more advanced corpus-based

semantic models that take into account additional semantic information such as word order, sentence
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structure, and relationship types. We believe this will improve the results on certain semantic tasks

such as the definition-based word recall experiment.
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Chapter 4

Autonomously Communicating Conceptual Knowledge Through Visual Art1

Abstract

In visual art, the communication of meaning or intent is an important part of eliciting an aesthetic

experience in the viewer. Building on previous work, we present three additions to DARCI that

enhances its ability to communicate concepts through the images it creates. The first addition is a

model of semantic memory based on word associations for providing meaning to concepts. The

second addition composes universal icons into a single image and renders the image to match an

associated adjective. The third addition is a similarity metric that maintains recognizability while

allowing for the introduction of artistic elements. We use an online survey to show that the system

is successful at creating images that communicate concepts to human viewers.

1Derrall Heath, David Norton, and Dan Ventura, Autonomously Communicating Conceptual Knowledge Through
Visual Art, Proceedings of the 4th International Conference on Computational Creativity, pp. 97-104, 2013
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4.1 Introduction

DARCI (Digital ARtist Communicating Intention) is a system for generating original images that

convey meaning. The system is part of ongoing research in the subfield of computational creativity,

and is inspired by other artistic image generating systems such as AARON [109] and The Painting

Fool [25]. Central to the design philosophy of DARCI is the notion that the communication of

meaning in art is a necessary part of eliciting an aesthetic experience in the viewer [36]. DARCI is

unique from other computationally creative systems in that DARCI creates images that explicitly

express a given concept.

DARCI is composed of two major subsystems, an image analysis component, and an

image generation component. The image analysis component learns how to annotate images

with adjectives by training a series of neural networks with labeled images. The specific inputs

to these neural networks, called appreciation networks, are global features extracted from each

image, including information about the general occurrence of color, lighting, and texture in the

images [121]. The image generation component uses a genetic algorithm, governed partly by the

analysis component, to render a source image to visually convey an adjective [123]. While often

effective, excessive filtering and extreme parameters can leave the source image unrecognizable.

In this paper we introduce new capabilities to DARCI—primarily, the ability to produce

original source images rather than relying upon pre-existing, human-provided images. DARCI

composes these original source images as a collage of iconic concepts in order to express a range

of concepts beyond adjectives, similar to a recently introduced system for The Painting Fool that

creates collages from the text of web documents [93]. However, in contrast to that system, ours

creates collages from conceptual icons discovered with a semantic memory model. The resulting

source images are then rendered according to an adjective discovered with this same semantic

memory model. In order to preserve the content of the collages after rendering them, we introduce

a variation on DARCI’s traditional image rendering technique. Figure 4.1 outlines the two major

components and their interaction, including the new elements presented in this paper. By polling
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online volunteers, we show that with these additions, DARCI is capable of creating images that

convey selected concepts while maintaining the aesthetics achieved with filters.

4.2 Methodology

Here we introduce the improvements to DARCI that enhance the system’s capability to communicate

intended meaning in an aesthetic fashion: a semantic memory model for broadening the range of

concepts the system can communicate, an image composer for composing concrete representations

of concepts into source images to be rendered, and a new metric for governing the evolution of the

rendering process. We also describe an online survey that we use to evaluate the success of these

additions.

Figure 4.1: A diagram outlining the two major components of DARCI. Image analysis learns
how to annotate new images with adjectives using a series of appreciation networks trained with
labeled images. Image generation uses a semantic memory model to identify nouns and adjectives
associated with a given concept. The nouns are composed into a source image that is rendered to
reflect the adjectives, using a genetic algorithm that is governed by a set of evaluation metrics. The
final product is an image that reflects the given concept. Additions from this paper are highlighted.
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4.2.1 Semantic Memory Model

In cognitive psychology, the term semantic memory refers to the memory of meaning and other

concept-based knowledge that allows people to consciously recall general information about the

world. It is often argued that creativity requires intention (and we are certainly in this camp). In

this context, we mean creativity in communicating a concept, and at least one part of this can be

accommodated by an internal knowledge of the concept (i.e, a semantic memory).

The question of what gives words (or concepts) meaning has been debated for years; however,

it is commonly agreed that a word, at least in part, is given meaning by how the word is used

in conjunction with other words (i.e., its context) [51]. Many computational models of semantic

memory consist of building associations between words [40, 152], and these word associations

essentially form a large graph that is typically referred to as asemantic network. Associated words

provide a level of meaning to a concept (word) and can be used to help convey its meaning.

Word associations are commonly acquired in one of two ways: from people and automati-

cally by inferring them from a corpus. Here we describe a computational model of semantic memory

that combines human free association norms with a simple corpus-based approach. The idea is to

use the human word associations to capture general knowledge and then to fill in the gaps using the

corpus method.

Lemmatization and Stop Words

In gathering word associations, we use the standard practice of removing stop words and lemmatiz-

ing. The latter process is accomplished using WordNet’s [55] database of word forms; it should be

noted, however, that lemmatization with WordNet has its limits. For example, we cannot lemmatize

a word across different parts of speech. As a result, words like ‘redeem’ and ‘redeeming’ will

remain separate concepts because ‘redeeming’ could be the gerund form of the verb ‘redeem’ or it

could be an adjective (i.e., the act of ‘a redeeming quality’).
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Free Association Norms

One of the most common means of gathering word associations from people is through Free

Association Norms (FANs), which is done by asking hundreds of human volunteers to provide

the first word that comes to mind when given a cue word. This technique is able to capture many

different types of word associations including word co-ordination (pepper, salt), collocation (trash,

can), super-ordination (insect, butterfly), synonymy (starving, hungry), and antonymy (good, bad).

The association strength between two words is simply a count of the number of volunteers that

said the second word given the first word. FANs are considered to be one of the best methods for

understanding how people, in general, associate words in their own minds [118]. In our model

we use two preexisting databases of FANs: The Edinburgh Associative Thesaurus [91] and the

University of Florida’s Word Association Norms [118].

Note that in this model we consider word associations to be undirected. In other words,

if word A is associated with word B, then word B is associated with word A. Hence, when we

encounter data in which word A is a cue for word B and word B is also a cue for word A, we

combine them into a single association pair by adding their respective association strengths. Between

these two databases, there are a total of 19,327 unique words and 288,069 unique associations. We

refer to these associations as human data.

Corpus Inferred Associations

Discovering word associations from a corpus is typically accomplished using a family of techniques

called Vector Space Models [159], which uses a matrix for keeping track of word counts either

co-occurring with other words (term × term matrix) or within each document (term × document

matrix).

One of the most popular vector space models is Latent Semantic Analysis (LSA) [42], based

on the idea that similar words will appear in similar documents (or contexts). LSA builds a term×

document matrix from a corpus and then performs Singular Value Decomposition (SVD), which

essentially reduces the large sparse matrix to a low-rank approximation of that matrix along with
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a set of vectors, each representing a word (as well as a set of vectors for each document). These

vectors also represent points in semantic space, and the closer words are to each other in this space,

the closer they are in meaning (and the stronger the association between words).

Another popular method is the Hyperspace Analog to Language (HAL) model [104]. This

model is based on the same idea as LSA, except the notion of context is reduced more locally to a

word co-occurrence window of ±10 words instead of an entire document. Thus, the HAL model

builds a term × term matrix of word co-occurrence counts from a corpus. HAL then uses the

co-occurrence counts directly as vectors representing each word in semantic space. The size of the

term × term matrix is invariant to the size of the corpus and has been argued to be more congruent

to human cognition than the term × document matrix used in LSA [18, 168].

The corpus component of our model is constructed similarly to HAL but with some important

differences. We restrict the model to the same number of unique words as the human-generated

free associations, building a 19,327 × 19,327 (term × term) co-occurrence matrix M using a co-

occurrence window of±50 words. To account for the fact that common words will have generally

higher co-occurrence counts, we scale these counts by weighting each element of the matrix by

the inverse of the total frequency of both words at each element. This is done by considering each

elementMi,j , then adding the total number of occurrences of each word (i and j), subtracting out the

value at Mi,j (to avoid counting it twice), then dividing Mi,j by this computed number, as follows:

Mi,j ←
Mi,j

(
∑
i
Mi,j +

∑
j
Mi,j −Mi,j)

(4.1)

The result could be a very small number, and therefore we then also normalize the values between 0

and 1.

For our corpus we use Wikipedia, as it is large, easily accessible, and covers a wide range of

human knowledge [44]. Once the co-occurrence matrix is built from the entire text of Wikipedia,

we use the weighted/normalized co-occurrence values themselves as association strengths between

words. This approach works, since we only care about the strongest associations between words,
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and it allows us to reduce the number of irrelevant associations by ignoring any word pairs with

a co-occurrence count less than some threshold. We chose a threshold of 100 (before weighting),

which provides a good balance of producing a sufficient number of associations, while reducing the

number of irrelevant associations. When looking up a particular word, we return the top n other

words with the highest weighted/normalized co-occurrence values. This method, which we will call

corpus data from now on, gives a total of 4,908,352 unique associations.

Combining Word Associations

Since each source (human and corpus) provide different types of word associations, a combination

of these methods into a single model has the potential to take advantage of the strengths of each

method. The hypothesis is that the combined model will better communicate meaning to a person

than either model individually because it presents a wider range of associations.

Our method merges the two separate databases into a single database before querying it for

associations. This method assumes that the human data contains more valuable word associations

than the corpus data because the human data is typically used as the gold standard in the literature.

However, the corpus data does contain some valuable associations not present in the human data.

The idea is to add the top n associations for each word from the corpus data to the human data

but to weight the association strength low. This is beneficial for two reasons. First, if there are

any associations that overlap, adding them again will strengthen the association in the combined

database. Second, new associations not present in the human data will be added to the combined

database and provide a greater variety of word associations. We keep the association strength low

because we want the corpus data to reinforce, but not dominate, the human data.

To do this, we first copy all word associations from the human data to the combined database.

Next, let W be the set of all 19,327 unique words, let Ai,n ⊆ W be the set of the top n words

associated with word i ∈ W from the corpus data, let scorei,j be the association strength between

words i and j from the corpus data, let maxi be the maximum association score present in the
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human data for word i, and let θ be a weight parameter. Now for each i ∈ W and for each j ∈ Ai,n,

the new association score between words i and j is computed as follows:

scorei,j ← (maxi · θ) · scorei,j (4.2)

This equation scales scorei,j (which is already normalized) to lie between 0 and a certain

percentage (θ) of maxi. The n associated words from the corpus are then added to the combined

database with the updated scores. If the word pair is already in the database, then the updated score

is added to the score already present. For the results presented in this paper we use n = 20 and

θ = 0.2, which were determined based on preliminary experiments. After the merge, the combined

database contains 443,609 associations.

4.2.2 Image Composer

The semantic memory model can be considered to represent the meaning of a word as a (weighted)

collection of other words. DARCI effectively makes use of this collection as a decomposition of

a (high-level) concept into simpler concepts that together represent the whole, the idea being that

in many cases, if a (sub)concept is simple enough, it can be represented visually with a single

icon (e.g., the concept ‘rock’ can be visually represented with a picture of a ‘rock’). Given such

collection of iconic concepts, DARCI composes their visual representations (icons) into a single

image. The image is then rendered to match some adjective associated with the original (collective)

concept.

To represent these “simple enough” concepts, DARCI makes use of a collection of icons

provided by The Noun Project, whose goal is to build a repository of symbols/icons that can be

used as a visual language [154]. The icons are intended to be simple visual representations of any

noun and are published by various artists under the Creative Commons license. Currently, The

Noun Project provides 6,334 icons (each 420 × 420 pixels) representing 2,535 unique nouns and is

constantly growing.
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When given a concept, DARCI first uses the semantic memory model to retrieve all words

associated with the given concept, including itself. These word associations are filtered by returning

only nouns for which DARCI has icons and adjectives for which DARCI has appreciation networks.

The nouns are sorted by association strength and the top 15 are kept. For each noun, multiple icons

are usually available and one or two of these icons are are chosen at random to create a set of icons

for use in composing the image.

The icons in the set are scaled to between 25% and 100% of their original size according to

their association strength rank. Let I be the set of icons, and let r : I → [0, |I| − 1] be the rank of

icon i ∈ I , where the icon with rank 0 corresponds to the noun with the highest association strength.

Finally, let φi be the scaling factor for icon i, which is computed as follows:

φi ← 1− 0.75

|I| − 1
r(i) (4.3)

An initial blank white image of size 2000 × 2000 pixels is created and the set of scaled

icons are drawn onto the blank image at random locations, the only constraints being that no icons

are allowed to overlap and no icons are allowed to extend beyond the border of the image. The

result is a collage of icons that represents the original concept. DARCI then randomly selects

an adjective from the set returned by the semantic memory model weighted by each adjective’s

association strength. DARCI uses its adjective rendering component, described in prior work, to

render the collage image according to the selected adjective [76, 123, 124]. The final image will

both be artistic and in some way communicate the concept to the viewer. Figure 4.1 shows how this

process is incorporated into the full system.

4.2.3 Similarity Metric

To render an image, DARCI uses a genetic algorithm to discover a combination of filters that will

render a source image (in this case, the collage) to match a specified adjective. The fitness function

for this process combines an adjective metric and an interest metric. The former measures how

effectively a potential rendering, or phenotype, communicates the adjective, and the latter measures
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the “difference” between the phenotype and the source image. Both metrics use only global image

features and so fail to capture important local image properties correlated with image content.

In this paper we introduce a third metric, similarity, that borrows from the growing research

on bag-of-visual-word models [37, 149] to analyze local features, rather than global ones. Typically,

these interest points are those points in an image that are the most surprising, or said another way,

the least predictable. After an interest point is identified, it is described with a vector of features

obtained by analyzing the region surrounding the point. Visual words are quantized local image

features. A dictionary of visual words is defined for a domain by extracting local interest points

from a large number of representative images and then clustering them (typically with k-means)

by their features into n clusters, where n is the desired dictionary size. With this dictionary, visual

words can be extracted from any image by determining which clusters the image’s local interest

points belong. A bag-of-visual-words for the image can then be created by organizing the visual

word counts for the image into a fixed vector. This model is analogous to the bag-of-words construct

for text documents in natural language processing.

For the new similarity metric, we first create a bag-of-visual-words for the source image and

each phenotype, and then calculate the Euclidean distance between these two vectors. This metric

has the effect of measuring the number of interest points that coincide between the two images.

We use the standard SURF (Speeded-Up Robust Features) detector and descriptor to extract

interest points and their features from images [8]. SURF quickly identifies interest points using

an approximation of the difference of Gaussians function, which will often identify corners and

distinct edges within images. To describe each interest point, SURF first assigns an orientation to

the interest point based on surrounding gradients. Then, relative to this orientation, SURF creates a

64 element feature vector by summing both the values and magnitudes of Haar wavelet responses in

the horizontal and vertical directions for each square of a four by four grid centered on the point.

We build our visual word dictionary by extracting these SURF features from the database of

universal icons mentioned previously. The 6334 icons result in more than two hundred thousand

interest points which are then clustered into a dictionary of 1000 visual words using Elkan k-
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means [49]. Once the Euclidean distance, d, between the source image’s and the phenotype’s

bags-of-visual-words is calculated, the metric, S, is calculated to provide a value between 0 and 1

as follows:

S = MAX(
d

100
, 1)

where the constant 100 was chosen empirically.

4.2.4 Online Survey

Since our ultimate goal is a system that can create images that both communicate intention and are

aesthetically interesting, we have developed a survey to test our most recent attempts at conveying

concepts while rendering images that are perceived as creative.

The survey asks users to evaluate images generated for ten concepts across three rendering

techniques. The ten concepts were chosen to cover a variety of abstract and concrete topics. The

abstract concepts are ‘adventure’, ‘love’, ‘music’, ‘religion’, and ‘war’. The concrete concepts are

‘bear’, ‘cheese’, ‘computer’, ‘fire’, and ‘garden’.

We refer to the three rendering techniques as unrendered, traditional, and advanced. For

unrendered, no rendering is applied—these are the plain collages. For the other two techniques,

the images are rendered using one of two fitness functions to govern the genetic algorithm. For

traditional, the fitness function is the average of the adjective and interest metrics. For advanced

rendering, the new similarity metric is added. Here the adjective metric is weighted by 0.5, while

the interest and similarity metrics are each weighted by 0.25. For each rendering technique and

image, DARCI returned the 40 highest ranking images discovered over a period of 90 generations.

We then selected from the pools of 40 for each concept and technique, the image that we felt best

conveyed the intended concept while appearing aesthetically interesting. An example image that we

selected from each rendering technique can be seen in Figure 4.2.

To query the users about each image, we followed the survey template that we developed

previously to study the perceived creativity of images rendered with different adjectives [ 124]. In

this study, we presented users with six five-point Likert items [100] per image; volunteers were
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(a) unrendered (b) traditional (c) advanced

Figure 4.2: Example images for the three rendering techniques representing the concept ‘garden’.

(a) unrendered (b) traditional (c) advanced

Figure 4.3: Example dummy images for the concept ‘water’ that appeared in the survey for the
indicated rendering techniques.

asked how strongly they agreed or disagreed (on a five point scale) with each statement as it

pertained to one of DARCI’s images. The six statements we used were (abbreviation of item in

parentheses):

I like the image. (like)

I think the image is novel. (novel)

I would use the image as a desktop wallpaper. (wallpaper)

Prior to this survey, I have never seen an image like this one. (never seen)

I think the image would be difficult to create. (difficult)

I think the image is creative. (creative)

In previous work, we showed that the first five statements correlated strongly with the sixth,

“I think the image is creative” [124], justifying this test as an accurate evaluation of an image’s
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(a) (b) (c) (d)

Figure 4.4: The images that were rated the highest on average for each statement. Image (a) is
the advanced rendering of ‘adventure’ and was rated highest for like, novel, difficult, and creative.
Image (b) is the traditional rendering of ‘music’ and was rated highest for wallpaper. Image (c) is
the advanced rendering of ‘love’ and was rated highest for never seen. Image (d) is the advanced
rendering of ‘music’ and was rated highest for concept.

subjective creativity. In this paper, we use the same six Likert items and add a seventh to determine

how effective the images are at conveying their intended concept:

I think the image represents the concept of “ .” (concept)

To avoid fatigue, volunteers were only presented with images from one of the three rendering

techniques mentioned previously. The technique was chosen randomly and then the images were

presented to the user in a random order. To help gauge the results, three dummy images were

introduced into the survey for each technique. These dummy images were created for arbitrary

concepts and then assigned different arbitrary concepts for the survey so that the image contents

would not match their label. Unfiltered dummy collages were added to the unrendered set of images,

while traditionally rendered versions were added to the traditional and advanced sets of images.

The three concepts used to generate the dummy images were: ‘alien’, ‘fruit’, and ‘ice’. The three

concepts that were used to describe these images in the survey were respectively: ‘restaurant’,

‘water’, and ‘freedom’. To avoid confusion, from here on we will always refer to these dummy

images by their description word. The dummy images for the concept of ‘water’ are shown in

Figure 4.3. In total, each volunteer was presented with 13 images.
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4.3 Results

A total of 119 anonymous individuals participated in the online survey. Volunteers could quit the

survey at anytime, thus not evaluating all 13 images. Each person evaluated an average of 9 images

and each image was evaluated by an average of 27 people. The highest and lowest rated images for

each question can be seen in Figures 4.4 and 4.5 respectively.

The three dummy images for each rendering technique are used as a baseline for the concept

statement. The results of the dummy images versus the valid images are show in Figure 4.6. The

average concept rating for the valid images is significantly better than the dummy images, which

shows that the intended meaning is successfully conveyed to human viewers more reliably than an

arbitrary image. These results confirm that the intelligent use of iconic concepts is beneficial for the

visual communication of meaning. Further, it is suggestive that the ratings for the other statements

are generally lower for the dummy images than for the valid images. Since the the dummy images

were created for a different concept than the one which they purport to convey in the survey, this

may be taken as evidence that successful conceptual or intentional communication is an important

factor for the attribution of creativity.

The results of the three rendering techniques (unrendered, traditional, and advanced) for

all seven statements are shown in Figure 4.7. The unrendered images are generally the most

successful at communicating the intended concepts. This is likely because the objects/icons in the

unrendered images are left undisturbed and are therefore more clear and discernible, requiring the

least perceptual effort by the viewer. The rendered images (traditional and advanced) often distort

the icons in ways that make them less cohesive and less discernible and can thus obfuscate the

intended meaning. The trade-off, of course, is that the unrendered images are generally considered

less likable, less novel, and less creative than the rendered images. The advanced images are

generally considered more novel and creative than the traditional images, but the traditional images

are liked slightly more. The advanced images also convey the intended meaning more reliably than
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The images that were rated the lowest on average for each statement. Image (a) is the
advanced rendering of ‘fire’ and was rated lowest for difficult and creative. Images (b) and (c)
are the unrendered and advanced version of ‘religion’ and were rated lowest for neverseen and
wallpaper respectively. Images (d), (e), and (f) are the traditional renderings of ‘fire’, ‘adventure’,
and ‘bear’, respectively, and were rated lowest for like, novel, and concept respectively.

the traditional images, which indicates that the similarity metric is finding a better balance between

adding artistic elements and maintaining icon recognizability.

The difference between the traditional and advanced rendering was minimized by the fact

that we selected the image (out of DARCI’s top 40) from each group that best conveyed the concept

while also being aesthetically interesting. Out of all the traditional images, 39% had at least one

recognizable icon, while 74% of the advanced images had at least one recognizable icon. This

difference demonstrates that the new similarity metric helps to preserve the icons and provides a

greater selection of good images from which to choose, which is consistent with the results of the

survey. For comparison, Figure 4.8 shows some example images (both traditional and advanced)

that were not chosen for the survey.
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Figure 4.6: The average rating from the online survey for all seven statements comparing the dummy
images with the valid images. The valid images were more successful at conveying the intended
concept than the dummy images by a significant margin. Results marked with an asterix (*) indicate
statistical significance using the two tailed independent t-test. The lines at the top of each bar show
the 95% confidence interval for each value. The sample sizes for dummy and valid images are 251
and 818 respectively.

The results comparing the abstract concepts with the concrete concepts are shown in

Figure 4.9. For all seven statements, the abstract concepts are, on average, rated higher than the

concrete concepts. One possible reason for this is that concrete concepts are not easily decomposed

into a collection of iconic concepts because, being concrete, they are more likely to be iconic

themselves. For concrete concepts, the nouns returned by the semantic memory model are usually

other related concrete concepts, and it becomes difficult to tell which object is the concept in

question. For example, the concept ‘bear’ returns nouns like ‘cave’, ‘tiger’, ‘forest’, and ‘wolf’,

which are all related, but don’t provide much indication that the intended concept is ‘bear’. A person

might be inclined to generalize to a concept such as ‘wildlife’. Another possible reason why abstract

concepts result in better survey results than do concrete concepts is because abstract concepts allow

a wider range of interpretation and are generally more interesting. For example, the concept ‘cheese’

would generally be considered straightforward to most people, while the concept ‘love’ could have

variable meanings to different people in different circumstances. Hence, the images generated for
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Figure 4.7: The average rating from the online survey for all seven statements comparing the
three rendering techniques. The unrendered technique is most successful at representing the
concept, while the advanced technique is generally considered more novel and creative. Statistical
significance was calculated using the two tailed independentt-test. The lines at the top of each bar
show the 95% confidence interval for each value. The sample sizes for the unrendered, traditional,
and advanced techniques are 256, 285, and 277 respectively.

abstract concepts are generally considered more likable, more novel, and more creative than the

concrete images.

4.4 Conclusions and Future Work

We have presented three additions to the computer system, DARCI, that enhance the system’s ability

to communicate specified concepts through the images it creates. The first addition is a model of

semantic memory that provides conceptual knowledge necessary for determining how to compose

and render an image by allowing the system to make decisions and reason (in a limited manner)

about common world knowledge. The second addition uses the word associations from a semantic

memory model to retrieve conceptual icons and composes them into a single image, which is then

rendered in the manner of an associated adjective. The third addition is a new similarity metric used
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Sample images that were not chosen for the online survey. Images (a), (b), and (c) are
traditional renderings of ‘adventure’, ‘love’, and ‘war’ respectively. Images (d), (e), and (f) are
advanced renderings of ‘bear’, ‘fire’, and ‘music’ respectively.

during the adjective rendering phase that preserves the discernibility of the icons while allowing for

the introduction of artistic elements.

We used an online survey to evaluate the system and show that DARCI is significantly

better at expressing the meaning of concepts through the images it creates than an arbitrary image.

We show that the new similarity metric allows DARCI to find a better balance between adding

interesting artistic qualities and keeping the icons/objects recognizable. We show that using word

associations and universal icons in an intelligent way is beneficial for conveying meaning to human

viewers. Finally, we show that there is some degree of correlation between how well an image

communicates the intended concept and how well liked, how novel, and how creative the image

is considered to be. To further illustrate DARCI’s potential, Figure 4.10 shows additional images

encountered during various experiments with DARCI that we thought were particularly interesting.
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Figure 4.9: The average rating from the online survey for all seven statements comparing the abstract
concepts with the concrete concepts. The abstract concepts generally received higher ratings for all
seven statements. Results marked with an asterix (*) indicate statistical significance using the two
tailed independent t-test. The lines at the top of each bar show the 95% confidence interval for each
value. The sample sizes for abstract and concrete concepts are 410 and 408 respectively.

In future research we plan to do a direct comparison of the images created by DARCI with

images created by human artists and to further investigate how semantic memory contributes to the

creative process. We plan to improve the semantic memory model by going beyond word-to-word

associations and building associations between words and other objects (such as images). This

will require expanding DARCI’s image analysis capability to include some level of image noun

annotation. The similarity metric presented in this paper is a step in that direction. An improved

semantic memory model could also help enable DARCI to discover its own topics (i.e., find its

own inspiration) and to compose icons together in more meaningful ways, by intentional choice of

absolute and relative icon placement, for example.
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(a) bear (b) murder (c) war

Figure 4.10: Notable images rendered by DARCI during various experiments and trials.
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Chapter 5

Imagining Imagination: A Computational Framework Using Associative Memory Models

and Vector Space Models1

Abstract

Imagination is considered an important component of the creative process, and many psychologists

agree that imagination is based on our perceptions, experiences, and conceptual knowledge, recom-

bining them into novel ideas and impressions never before experienced. As an attempt to model this

account of imagination, we introduce the Associative Conceptual Imagination (ACI) framework

that uses associative memory models in conjunction with vector space models. ACI is a framework

for learning conceptual knowledge and then learning associations between those concepts and

artifacts, which facilitates imagining and then creating new and interesting artifacts. We discuss the

implications of this framework, its creative potential, and possible ways to implement it in practice.

We then demonstrate an initial prototype that can imagine and then generate simple images.

1Derrall Heath, Aaron Dennis, and Dan Ventura, Imagining Imagination: A Computational Framework Using Asso-
ciative Memory Models and Vector Space Models,Proceedings of the 6th International Conference on Computational
Creativity, pp. 244–251, 2015
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5.1 Introduction

The concept of imagination is not often talked about in cognitive psychology without reference to

creativity [59, 167]. In fact, the term ‘imaginative’ is many times used as a synonym for ‘creative’.

Defining imagination, like creativity, is difficult because the word is used broadly and depends on

the audience, the level of granularity, and the context [151]. In cognitive psychology, imagination is

commonly generalized as thinking of something (real or not) that is not present to the senses [ 10].

In terms of creativity, it is being able to conceive of and conceptualize novel ideas. Imagination,

thus it seems, should be an important consideration when developing creative systems.

In the field of computational creativity, imagination is discussed explicitly only on rare

occasions, such as Colton’s creative tripod [24]. Most creative systems incorporate imagination

implicitly and do not model it directly. In this paper, we propose a computational framework

that attempts to explicitly model imagination in order to perform creative tasks. Our framework,

called the Associative Conceptual Imagination (ACI) framework, uses associative memory models

(AMMs) combined with vector space models (VSMs) to enable the system to imagine and then

create novel and interesting artifacts.

We begin by looking more closely at the psychology literature in order to establish a

cognitive basis for imagination, which will motivate the design of our framework. We then consider

how current computational models of creativity both succeed and fail at addressing imagination. We

then outline in detail the ACI framework for imagination and demonstrate an initial implementation

(proof-of-concept) in the domain of visual art. Finally, we discuss the possibilities this framework

can afford us in building creative systems and talk about questions regarding its application.

5.1.1 Psychology of Imagination

Imagination is ubiquitous in everyday life. We can visually imagine a world described through

narrative, or imagine how to get to the grocery store, or imagine what it would be like to be a

celebrity. We can imagine what a lion crossed with an eagle could look like, or imagine new ways

to express meaning through art. Although most often thought of as visualizing in the mind, we can
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imagine in conjunction with any of our senses. Indeed, we can talk about imagination across the

whole range of human experience. Imagination is a broad term with many different taxonomies and

ways to interpret it. We restrict our view to two major types of imagination that are commonly used

by psychologists [38].

The first type of imagination is sensory (or reproductive) imagination. This is mentally

recalling past experience, which is directly related to our memories. For example, one can imagine

what their favorite food tastes like without actually tasting the food, or imagine their mother’s

face when she is not present, or imagine an annoying song that is stuck in one’s head. This type

of imagination can be thought of as creative in the sense of recreating in one’s mind a previous

experience.

The second type of imagination is creative (or productive) imagination. It is the ability to

combine ideas in different ways never before observed, or the ability to think about the world from

a different perspective than previously experienced. For example, one can imagine what a hairy

banana monster could look like, or what life would be like if born in another country, or imagine

how to compose music that is happy and uplifting. This type of imagination is more clearly tied to

creativity and some have argued that it forms a necessary basis for creativity [167], while others

have argued that imagination is merely a tool used in the creative process [59].

Most psychologists agree that our senses, our conceptual knowledge, and our memories

form the bases of imagination [7, 10]. As we perceive the world and have experiences, we create

memories by establishing and strengthening connections in our mind. These connections form

concepts, which are in turn interconnected. Memories are often argued to be distributed and content

addressable across groups of neurons [58]. This means that multiple neurons respond in varying

strengths to certain experiences, different experiences may activate overlapping neurons, and similar

experiences will have more overlapping neurons than dissimilar experiences. This distributed

memory allows the brain to implicitly associate concepts and experiences together.

Thus we have associations between concepts (e.g., rain is related to water) and between what

we perceive and these concepts (e.g., apples look round and are typically reddish in color). Creative
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imagination cannot make something out of nothing, nor is it random; everything we imagine is

anchored to things we have actually experienced in the past and on their connections [167]. The

novelty is in combining these experiences in different ways. When a chef imagines new recipes, she

uses her knowledge of existing recipes, ingredients, methods, and kitchen tools. The new recipe is

essentially a recombination of this previous information in a novel and (hopefully) delicious way.

A computational model of imagination should address the abilities to perceive, to create

memories, and to learn associations between concepts. Such a model should then be able to

reconstruct this information (sensory imagination), as well as recombine this information in novel

ways to create new and interesting things never before experienced (creative imagination).

5.1.2 Related Work

In accounting for creativity in computational systems, Colton was one of the first to explicitly

mention imagination as part of the creative process [24]. In order for a system to have imagination,

it should be able to produce artifacts that are novel. Others have mentioned imagination in relation

to a creative system that produces narratives [178].

A computational system that explicitly tries to model imagination is SOILIE (Science Of

Imagination Laboratory Imagination Engine) [15]. SOILIE maintains a large database of labeled

images, and words are associated together when they appear as co-occurring labels. For example, a

picture of a face could be labeled with ‘face’, ‘ear’, ‘mouth’, etc. and the system learns to associate

those labels together. A word is given to the system which then finds 5-10 associated words and

creates a collage out of images that have been labeled with those associated words. This system

demonstrates a rudimentary form of sensory imagination in which it tries to recreate an image of

the inputed word. SOILIE is similar to one of the abilities of the Painting Fool, which can extract

key words from a text document and create a collage by finding images of those key words in a

database [93].

Creative imagination was partially demonstrated in a system that used recurrent neural

networks to produce melodies according to a set of other melodies arranged on a 2D plane [155].
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Each of the melodies in the training set were tied to a specific 2D location, and the model was

trained to reproduce each melody at their respective locations. After training, the system would be

given a new location on the 2D plane and could essentially interpolate a new melody according to

its proximity to the original set of melodies. This is the beginnings of creative imagination in that

the system is blending melodies together according to spacial proximity.

Imagination has been mentioned in conjunction with systems that perform conceptual

blending to produce metaphors and narratives [41, 162, 178]. Conceptual blending is the process of

taking two input mental spaces (representing concepts) and mixing them together to make a blended

mental space that is novel, meaningful, and has emergent structure (e.g., lightsaber is a blend of

sword and laser) [54]. Computational models of conceptual blending have been used to produce

narrative [132], poetry [71], and even mathematical axioms [108].

Conceptual blending certainly has potential for imagination as it explicitly attempts to

blend conceptual knowledge into novel ideas. Although there are still many technical challenges in

autonomously blending input spaces, conceptual blending does seem to address creative imagination.

Unfortunately, most implementations do not consider sensory information and the input spaces are

typically hand engineered, so the system does not learn from experience and cannot imagine sensory

type artifacts. However, one computational system does try to implement conceptual blending with

images [150]. The system takes two pictures that each represent a concept and blends them by

extracting commonly shaped objects in one image and pasting them over similarly shaped objects

in the other image (e.g., a globe in one image is pasted over a bicycle tire in another image).

Evolutionary computation is a common method incorporated into creative systems because of

its innate ability to yield unpredictable yet acceptable results [61]. Indeed, evolutionary computation

seems to at least partially model creative imagination in that it recombines and modifies existing

artifacts through crossover/mutation and can, thus, diverge and discover novel artifacts. The

fitness function also guides the evolutionary process to converge on quality results. Many systems

incorporate the use of evolutionary techniques to produce artifacts in domains such as visual

art [46, 106, 124], music [113], and semantic networks [9].
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Evolutionary computation appears to have potential in addressing both sensory and creative

imagination. However, the creative intent seems to reside solely in the fitness function, which

is separated from the actual generation of artifacts. The creation of artifacts is an independently

random event that is not connected to any associations learned through experience (except for

maybe the population of artifacts themselves). The act of imagination in this case is mostly a

selection/filtering process, which, although viable, doesn’t seem to capture the complete picture. In

its basic form at least, there is no notion of associations between concepts and artifacts.

5.2 Associative Conceptual Imagination

We attempt to explicitly model imagination through a computational framework called the Asso-

ciative Conceptual Imagination (ACI) framework. ACI uses ideas from other domains in a novel

way that is capable of both sensory and creative imagination. ACI is composed of two major types

of components, a vector space model and associative memory models as shown in Figure 5.1. We

will discuss the major components of the ACI framework, how they interact to perform various

imaginative tasks, and the creative potential of systems built using this framework.

5.2.1 Vector Space Model

Creativity is valued not just because of the novelty of things created, but also because of their utility.

For example, in domains such as visual art, the value is in how the art conveys meaning to the

viewers [36]. There is an element of intentionality as an artist purposefully expresses meaning

through art. How can an artist intentionally express meaning without having knowledge of the

world and of what things mean? Conceptual knowledge helps to provide a foundation for the ability

to imagine and create. Incorporating conceptual knowledge into a creative system can potentially

be achieved through Vector Space Models (VSMs) [159].

It is commonly agreed that a word (or concept), at least in part, is given meaning by how the

concept is used in conjunction with other words (i.e., its context) [96]. Vector space models take
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Figure 5.1: An overview of the Associative Conceptual Imagination framework. The vector space
model learns, from a large corpus, how to encode semantic information into concept vectors that
populate conceptual space. Multiple associative memory models can then learn associations between
these concept vectors and example artifacts from various domains, such as art, music, or recipes.
These associative memory models are bi-directional and can not only discriminate, but also generate
artifacts according to a given concept vector. The semantic structure encoded in the concept vectors
allows the framework to facilitate the imagining of artifacts according to concepts for which it has
never seen examples.

advantage of this by analyzing large corpora and learning multi-dimensional vector representations

for each concept that encode such semantic information. These models are based on the idea

that similar words will occur in similar contexts and words that are often associated together will

often co-occur close together. These models reduce words to a vector representation that can be

compared to other word vectors. VSMs have been successfully used on a variety of tasks such as

information retrieval [143], multiple choice vocabulary tests [43], TOEFL multiple choice synonym

questions [137], and multiple choice analogy questions from the SAT test [158].

Concepts similar in meaning will have vectors that are close to each other in “vector

space”, which we will refer to as conceptual space. Associations between concepts are implicitly

encoded by their proximity in conceptual space. Figure 5.2 shows relationships between example

word vectors that correspond to various topics projected onto a 2D plane. These concept vectors

capture other interesting semantic relationships that are consistent with arithmetic operations. For

example, vector(“king”)− vector(“man”) + vector(“woman”) results in a vector that is closest

to vector(“queen”).

88



www.manaraa.com

Figure 5.2: A 2D visualization (projected from high dimensional space) of several word vectors
color coded by topics. These concept vectors were learned using the skip-gram VSM, which was
incorporated into the DeViSE model (visualization courtesy of Frome et al. 2013). Note that
concepts from similar topics generally cluster together because the concept vectors encode semantic
relationships.

The potential of VSMs in creative systems has been discussed before, and we aim to

make use of them in this framework [110]. The semantic information encoded in the vectors

provides a form of conceptual knowledge to the ACI framework, which will help provide a basis for

imagination.

5.2.2 Associative Memory Models

In addition to knowing how concepts relate to each other, the ACI framework needs to allow

understanding of how concepts relate to actual artifacts. In other words, ACI systems should be able

to perceive and observe the world (i.e., to be grounded in sensory information). ACI incorporates

Associative Memory Models (AMMs) to learn how to associate artifacts with concept vectors. For

example, models built using ACI can learn what a ‘cat’ looks like by observing pictures of ‘cats’, or

learn what a ‘car’ sounds like by listening to sound files of ‘cars’.
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Here we use “associative memory model” as a generic term that refers to any computational

model or algorithm that is capable of learning bi-directional relationships between artifacts and

concept vectors. Not only should the AMM be capable of predicting the appropriate concept vector

given an artifact, but it should also be capable of going the other direction and producing an artifact

given a concept vector. Of course, the quality of learning will be dependent on the quality and

quantity of labeled training data, as well as on the characteristics of the particular associative

memory model that is chosen.

Bidirectional associative memory models (BAMs) seem like an obvious possible choice to

implement the AMM [92]. A BAM is a type of recurrent neural network that learns to bidirectionally

map one set of patterns to another set of patterns. Given an artifact (encoded into a pattern), a

BAM could return the appropriate concept vector. Conversely, given a concept vector, a BAM

could return an appropriate artifact, which can essentially be thought of as performing sensory

imagination. Variations of BAMs have been used in computational creativity to associate input

patterns to features in order to model the phenomenon of surprise [12].

Another family of algorithms that have potential use in the ACI framework are probabilistic

generative models. These models learn a joint distribution for observed data and their respective

labels/classes. Once trained, not only can these models classify new data, but they can also be used

generatively to create new instances of data that correspond to a particular label. For example, a

Deep Belief Network (DBN) is a generative model that can also be thought of as a deep neural

network in which several layers of nodes (or latent variables) are connected by weights from

neighboring layers, while nodes of the same layer are not connected [78]. Hinton et al. used DBNs

to classify images of handwritten digits (0-9) by training on several examples and then used them

generatively to “imagine” what a 2 looks like by creating several images that each uniquely looked

like a handwritten two, thus demonstrating a form of sensory imagination.

Another generative model uses a hierarchical approach to recognize and then generate

unique images of handwritten symbols, again demonstrating sensory imagination [95]. Sum Product

Networks (SPNs) have also been used to learn bidirectional associations between patterns [135].
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Given a picture of half a face, SPNs were able to infer (or imagine) the other half. These generative

models can often be applied directly to the raw inputs (i.e., directly to pixels in an image) and thus

seem to exhibit advanced perceptual abilities and in turn can generate artifacts directly.

The associative memory model implementation is not limited to a single model, but could

be split into separate discriminative and generative parts. A machine learning algorithm could be

the discriminative part and be trained to predict a given artifact’s concept vector (e.g., given a ‘sad’

melody, the learning algorithm predicts the ‘sad’ vector). The generative part could be implemented

by a genetic algorithm that uses the discriminative model as the fitness function. For example, a

genetic algorithm could be given the ‘sad’ vector to imagine a ‘sad’ melody, and the discriminative

model knows what characteristics a ‘sad’ melody should have and could then guide the evolutionary

process.

Other specific associative memory models could be incorporated depending on the domain,

its representation, and available training data. Additionally, multiple AMMs for different domains

could be incorporated into the framework simultaneously (i.e., one model learns images while

another learns sounds for each concept), with the AMMs then indirectly related through conceptual

space.

5.2.3 Performing Imagination

Once an implementation of the ACI framework has its components in place and properly trained, it

is ready to imagine, and even create, artifacts. To perform sensory imagination, an ACI model can

generate artifacts for a particular concept that it has previously learned. For instance, after having

seen example images of ‘cats’, the system has learned an internal representation for what a ‘cat’

looks like. The associative memory model can then start with the ‘cat’ concept vector and generate

a unique image that would likely be associated with the ‘cat’ vector, presumably an image of a ‘cat’

(see Figure 5.3(a)). In the case of using probabilistic generative models, the probabilistic nature of

the model and the distribution of various poses, angles, and colors learned from the many example

‘cat’ images allow the system to generate a unique ‘cat’ image each time.
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(a) (b)

(c) (d)

(e)

Figure 5.3: Different ways the Associative Conceptual Imagination framework can be used to
imagine artifacts. The green rectangle with black dots represents concept vectors in conceptual
space, which are learned from a vector space model. The Associative Memory Model (AMM)
associates concept vectors to artifacts. The framework allows the imagining of artifacts for concepts
it has previously observed (a). It can facilitate the imagining of artifacts for concepts it has not
previously observed but that are similar to other concepts that is has observed (b). The framework
allows the imagining of artifacts that are combinations of two (or more) previously observed
concepts (c). Models based on ACI can imagine changes to a previously observed concept (d).
Finally, the framework can facilitate imagination across different domains by observing an artifact
in one domain and then imagining a related artifact in another domain (e).

To perform creative imagination, the framework takes inspiration from the DeViSE model,

which uses VSMs to aid in correctly recognizing images of objects [ 57]. The DeViSE model first

learns word vectors from a large corpus using a VSM. The model is then trained with raw image

pixels using a deep convolutional neural network that learns to predict the correct labels’ vector

(instead of the label directly). Cosine similarity is performed between the predicted vector and the

other word vectors to determine what the correct label should be. Since the vectors encode semantic

relationships between concepts, the model can successfully label an image with a word for which it

has never seen example images (called zero-shot prediction). For example, the system may have

92



www.manaraa.com

been trained on images of ‘rats’ and ‘mice’ but not on images labeled ‘gerbil’. Given a picture of a

‘gerbil’ the model can still successfully label it as such because a ‘gerbil’ is similar (according to

the VSM) to a ‘rat’ and a ‘mouse’.

Replacing the convolutional neural network with, say, a probabilistic generative model could

allow the system to act in reverse. We could input the vector for ‘gerbil’ and the system could

imagine what a ‘gerbil’ looks like without having ever seen a picture of a ‘gerbil’, because of the

semantic knowledge encoded in the vectors (see Figure 5.3(b). Similarly, the system could take

advantage of the semantic structure of the VSM and imagine what a concept sounds like without

having heard any example sounds for that concept. For example, the system could have been trained

on sounds for ‘horses’, ‘tractors’, ‘dogs’, and ‘trumpets’, but not have been exposed to any sounds

for ‘donkeys’. Yet, the system could still generate a unique sound for a ‘donkey’. The result may not

sound exactly like a ‘donkey’, but it will sound closer to a ‘horse’ than to the other concepts because

the system knows that ‘donkeys’ are more similar to ‘horses’ than to the other concepts. An ACI

model can imagine its own ‘donkey’ sound in a way that is novel, yet still reasonable by leveraging

semantic information gained through the VSM and transferring it to the task of generating sound.

In another situation, a system based on ACI can imagine what a combination of concepts

could look like by starting with a vector that is in between concepts in conceptual space. As shown

in Figure 5.3(c), the system could imagine what a ‘cold’ and ‘fiery’ image looks like by starting

with a vector part-way between the ‘cold’ and ‘fiery’ vectors. The system should generate a novel

image that is some blending of the two concepts (and perhaps other surrounding concepts). The

system is essentially imagining what new combinations of concepts look like, while being anchored

in past experience.

ACI could facilitate the imagining of distortions to existing concepts by gradually venturing

away from a concept’s vector along different dimensions (see Figure 5.3(d)). The system could

generate images of ‘roses’ starting with the ‘rose’ vector, but then gradually move away from the

‘rose’ vector. The resulting images should become distorted depending on the direction and distance

from the original vector.

93



www.manaraa.com

Finally, an ACI model could generate artifacts across different domains. The system could

learn, using separate associative memory models, what concepts look and sound like. Given a

picture of a ‘dog’, the system could then imagine what the ‘dog’ sounds like. The ACI model simply

uses the AMM for images to predict the vector associated with the ‘dog’ picture and then feeds that

predicted vector into the AMM for audio and has it generate a unique sound. The system could also

be given a melody and then imagine an image to go with it, the two domains being tied together

through the conceptual space as shown in Figure 5.3(e).

The ACI framework provides potential for these types of imaginative (and creative) abilities.

It has been designed to model imagination by learning conceptual knowledge, perceiving concepts

(artifacts), and generating novel artifacts never before experienced in several ways. Of course, this

is only a framework, and the actual power of it depends on the abilities of the specific VSM and

AMM implementations chosen for each domain (and their training data). Current state-of-the-art

models are probably not yet capable of generating (or even classifying) large, detailed images of

arbitrary concepts at the pixel level. Nor are they likely yet able to perceive sophisticated music

in the general case. However, these capabilities do seem to be on the horizon with the advent of

generative deep learning systems (such as DBNs).

5.3 Imagining Images

In order to show how the ACI framework could work in practice, we created a simple toy im-

plementation that can imagine basic binary images. Instead of using a vector space model, we

manually specified the conceptual space as a 2D plane in order to more easily visualize how images

at various vector locations relate to one another. We then chose four vectors in the 2D conceptual

space that are spatially located at four corners. The four vectors are~tl = (0.0, 0.1), ~tr = (1.0, 1.0),

~bl = (0.0, 0.0), and ~br = (1.0, 0.0), to which we will refer as the known vectors.

We then generated four sets of training images for each of the four known vectors that

are 32× 32 pixels in dimension and are binary (i.e., black and white). The training images were

pictures of actual corners, and example images for each of the four known vectors can be seen in
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Figure 5.4: Example training images for each of the four known 2D vectors shown in conceptual
space.

Figure 5.4. We implemented the associative memory model using a sum product network (SPN)

and trained the SPN using corner images paired with their associated known-vectors (perturbed

slightly using Gaussian noise). To learn the structure and parameters of the SPN, we used a modified

version of the LEARNSPN algorithm that is able to accommodate both categorical and continuous

random variables [60]. The result was a model that represents a joint probability distribution over

image-vector pairs. We used the efficient, exact-inference capabilities of the SPN to generate novel

images by sampling from the conditional probability distribution of images, conditioned on the

concept vector. This was done by clamping the concept vector to a specific value and sampling the

image pixel variables.

The model can perform sensory imagination by generating images for each of the four

known vectors that it has learned. The bottom set of images in Figure 5.5 are example images

imagined for the ~br = (1.0, 0.0) vector. Notice how each imagined image is unique yet still looks

like the training images in Figure 5.4.

The system can also perform creative imagination by generating images for vectors for

which it has never seen example images. These imagined images should look more similar to

nearby known vectors than to known vectors farther away. The top set of images in Figure 5.5

were produced for the vector (0.8, 0.2). These images are indeed similar to the images at vector

~br = (1.0, 0.0) (bottom set), which is the closest known vector. Although the system was never
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Figure 5.5: The bottom set of images were imagined for the vector ~br = (1.0, 0.0), which is one of
the four vectors on which the system had been trained. The top set of images were imagined for the
vector (0.8, 0.2), which is a vector on which the system was not trained. The top images are similar
to the bottom images because the vector (0.8, 0.2) is close, in conceptual space, to the known vector
~br = (1.0, 0.0).

shown images for vector (0.8, 0.2), it could still imagine what the images could look like by

leveraging the information represented by the vectors in conceptual space (in this simple case just

spatial information).

To further illustrate the imagining capabilities in this simple example, we had the system

generate images at vector locations all over the 2D plane in 0.1 increments. In order to help visualize

how the various generated images transition along conceptual space, we generated 100 images at

each vector location and averaged them into a single image. We then arranged each averaged image

on the plane according to their respective 2D vector (see Figure 5.6).

Moving from corner to corner on the 2D plane essentially shows the known images morphing

into each other. The center image becomes a blend of all four corner shapes, while the images

in the middle of the edges are a blend of the two corners on that edge. The model has only seen

images for the corner vectors, which provide a basis for the other vectors in the 2D plane. The

model cannot imagine images that do not relate to the four known corner images, which the results

seem to confirm.

Admittedly, this toy example with a small 2D conceptual space and simplistic binary images

is not visually impressive. It may be hard to ascribe imagination to a model that just seems to

be doing a form of interpolation. Keep in mind that this example is only intended to be a proof-

of-concept that demonstrates how the framework could work to generate actual artifacts. This
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Figure 5.6: The average of 100 rendered images for each 2D vector in conceptual space at 0.1
increments. The system was trained on example images only for the vectors located at the four
corners and then the system had to imagine what images at vectors in the middle would look like
based on the images observed for each of the four corner vectors. Note how the images start to
blend together as their corresponding vector approaches the middle of the space.

example also allows us to understand why the model is generating the images that it does—because

of the training images (perceived artifacts) and the spacial arrangements of the vectors (conceptual

relationships). A full implementation of this framework would be dealing with thousands of concepts

in a conceptual space hundreds of dimensions in size, which is a much richer representation of

conceptual knowledge. Also working with real artifacts, such as actual visual art or music, has the

potential to yield much more impressive results.

5.4 Conclusions and Future Work

We have outlined the Associative Conceptual Imagination framework, which models how imagi-

nation could occur in a computational system that generates novel artifacts. The ACI framework

accounts for the cognitive processes of learning conceptual knowledge and concept perception

(via artifacts). The framework proposes using vector space models to learn associations between
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different concepts, and using associative memory models to learn associations between concepts

and artifacts. This network of associations can be leveraged by the system to produce novel artifacts.

We have demonstrated a basic implementation of ACI and applied it to simple binary images.

We showed that the system could perform both sensory and creative imagination through the images

it was able to produce.

The ACI framework poses some interesting questions. How will this framework perform

when applied to real artifacts? What implementation and corpus should be used for the VSM? What

models are appropriate to use for the AMMs? Does the choice of the model depend on the domain?

Does the choice of the model depend on the artifact’s representation (e.g., an image could be repre-

sented by raw pixels, extracted image features, or parameters to a procedural algorithm)? Research

needs to be done to implement and refine this framework for various domains in order to explore

these questions, and we are confident that the ACI framework will be useful for computationally

creative systems.

In future work, we plan to apply the ACI framework to DARCI, a system designed to generate

original images that convey meaning [76]. We plan to use the skip-gram VSM [112] trained on

Wikipedia, which will learn vectors for 40,000 concepts in 300 dimensional space. Initially, we

intend to implement the AMM using a discriminative model and a genetic algorithm. We will use

145 descriptive concepts (e.g., ‘violent’, ‘strange’, ‘colorful’, etc) to train the discriminative model

to recognize those concepts in images. For example, the model will learn to predict the ‘scary’

vector when given a ‘scary’ image.

Once trained, the discriminative model will act as the fitness function to the genetic algorithm,

which can then render images in ways that convey descriptive concepts (i.e., it can render a ‘sad’

image). The system will also be able to render images that convey concepts on which it has not

been trained (beyond the 145) because of the semantic relationships encoded in the vectors. In other

words, it will be able to imagine what other concepts would look like based on past experience and

conceptual knowledge.
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This framework could also be extended to include ideas involving conceptual blending.

As it stands, the conceptual space does not change once the VSM learns the concept vectors and

blending occurs through the associations between concepts and artifacts. It could be interesting

to find ways to blend the concepts themselves together to produce new concepts that can then be

expressed through artifacts.
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Chapter 6

Creating Images by Learning Image Semantics Using Vector Space Models1

Abstract

When dealing with images and semantics, most computational systems attempt to automatically

extract meaning from images. Here we attempt to go the other direction and autonomously create

images that communicate concepts. We present an enhanced semantic model that is used to

generate novel images that convey meaning. We employ a vector space model and a large corpus

to learn vector representations of words and then train the semantic model to predict word vectors

that could describe a given image. Once trained, the model autonomously guides the process of

rendering images that convey particular concepts. A significant contribution is that, because of

the semantic associations encoded in these word vectors, we can also render images that convey

concepts on which the model was not explicitly trained. We evaluate the semantic model with an

image clustering technique and demonstrate that the model is successful in creating images that

communicate semantic relationships.

1Derrall Heath and Dan Ventura, Creating Images by Learning Image Semantics Using Vector Space Models,
Proceedings of The Thirtieth AAAI Conference on Artificial Intelligence, 2016
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6.1 Introduction

When considering the relationship between images and meaning (or semantics), most computational

systems focus on extracting meaning from images. For example, image annotation [169] and

content-based image retrieval [103] are two major topics in computer vision whose goal is to

automatically understand the semantics within images. Here we focus on going the other direction,

that is to generate images based on semantics.

There are few systems we know of that attempt to autonomously generate images that

communicate meaning. The WordsEye system tries to generate 3D scenes based on written

descriptions [34]. The Story Picture Engine [85] and the Text-to-Picture Synthesis System [179]

are both systems built to do automatic text illustration (i.e., to visually tell a story or to graphically

communicate the gist of text). AARON [109] and The Painting Fool [25] are both systems designed

to autonomously create visual art in ways meaningful to human viewers.

Our own system, DARCI, is designed to create novel, artistic images that explicitly express

a given concept [126]. Central to the design philosophy of DARCI is the notion that the communica-

tion of meaning in visual art is a necessary part of eliciting an aesthetic experience in the viewer [36].

In this paper we present a sophisticated semantic model that allows DARCI to internally represent

the meaning of concepts and to express these concepts through images in novel ways.

It is commonly agreed that a word (or concept), at least in part, is given meaning by how

the word is used in conjunction with other words (i.e., its context) [51, 96]. Vector Space Models

(VSMs) are common methods for automatically learning vector representations of word meaning

from a large corpus [159]. These models are based on the idea that similar words will occur in

similar contexts and words that are often associated together will often co-occur close together.

These models reduce words to a vector representation that can be compared to other word vectors.

VSMs have been successfully used on a variety of tasks such as information retrieval [143],

multiple choice vocabulary tests [43], multiple choice synonym questions from the TOEFL test [137],

multiple choice analogy questions from the SAT test [158], and object recognition systems [57].
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Additionally, an approach called the ACI (Associative Conceptual Imagination) framework has

recently been proposed as a way to use VSMs for imaginative and generative tasks [77].

We apply the ACI framework to DARCI by incorporating a VSM and building a visual

semantic model that uses a large neural network to learn associations between low-level image

features and adjective vectors from the VSM. This visual semantic model allows DARCI to create

images that convey the meaning of adjectives to the viewer. It also allows DARCI to take advantage

of the semantic structure between words and render images according to adjectives on which it

was never explicitly trained. For example, DARCI could be trained on ‘scary’ and ‘dark’ images,

but not ‘creepy’ images. DARCI could then “imagine” what a ‘creepy’ image would look like

because ‘creepy’ is similar in meaning to ‘scary’ and ‘dark’. Even higher level concepts (e.g., ‘love’,

‘freedom’) can be partially expressed through the images DARCI renders.

Clustering techniques have been previously developed to measure how well rendered images

convey descriptive concepts [76]. We apply these clustering methods here and show that the new

semantic model successfully enables DARCI to render images that convey a larger variety of

concepts in ways that accurately reflect their semantic relationships.

6.2 Methodology

DARCI is composed of two major subsystems, a semantic model and an image generator as shown

in Figure 6.1. We outline in detail the semantic model, which includes a state-of-the-art VSM that

learns semantic relationships between words, and an artificial neural network that does multi-target

regression to associate image features with the word vectors inferred from the VSM. We then

describe the image generator and how it interacts with the semantic model to create meaningful

images. Note that the image generator is not the focus of this paper, and further details, including

extensive evaluation, can be found in prior work [126].
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Figure 6.1: The two major components of DARCI. The semantic model first learns vector repre-
sentations of words by analyzing a corpus (vector space model). The visual semantic model then
learns to predict these word vectors using a neural network trained with labeled images. The image
generator uses the vector space model to identify other words associated with a given concept. The
nouns are composed into a source image (image composer) that is rendered to convey the original
concept using a genetic algorithm (image renderer) that is governed in part by the visual semantic
model. The final product is an image that reflects the given concept.

6.2.1 Semantic Model

In order for DARCI to express semantic information through pictures, it must first have its own

semantic knowledge that can influence the images it creates. Our goal is to leverage semantic

information gained through written text and transfer it to the task of meaningful image generation.

Vector Space Model

We use a state-of-the-art VSM, called theskip-gram model [112]. The skip-gram model is a neural

architecture that analyses a large corpus and learns to predict the surrounding words given a current

word. During training, the skip-gram model consequently learns vector representations for each

word, which encode semantic information. Words similar in meaning will have vectors that are close

to each other in “vector space”. These word vectors capture other interesting semantic relationships

that are consistent with arithmetic operations. For example, vector(“king”)− vector(“man”) +

vector(“woman”) results in a vector that is closest to vector(“queen”).

These semantic vectors allow DARCI to find concepts related to a given word and to assess

the similarity in meaning between words, which will aid DARCI in creating meaningful images.

We use a publicly available implementation of the skip-gram model2 and a lemmatized Wikipedia

corpus to learn the word vectors [44]. The skip-gram implementation is used with out-of-the-box
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parameters except for the vector size, which is set to 300. The choice of 300 provides a balance

between encoding enough semantic information to be useful and ease of prediction when associating

the vectors with image features.

Visual Semantic Model

In order for DARCI to leverage the word vectors for image creation, it must learn to associate image

qualities with the semantic vectors. Currently, we limit the associated words to vectors representing

adjectives and use a neural network model to predict the adjective vector for a given image.

We maintain a dataset of approximately 15,000 images that have either been explicitly hand

labeled or automatically retrieved through Google image search. Once an adjective has enough

labeled images (20 positive and 20 negative), we begin learning that adjective. As of this paper,

there are 145 adjectives that meet this threshold. We extract from each image 51 global and local

features representing attributes like color, lighting, texture, and local interest points, and have been

shown to work well for emotional and descriptive labels [127].

We train two separate neural networks, one with the positively labeled images, and one with

the negatively labeled images. The positive network tries to predict what adjective an image IS,

while the negative network tries to predict what adjective an image IS NOT. These networks learn

to predict the appropriate adjective vector given an image. We treat this as a multi-target regression

problem and initialize each neural network with 300 output nodes (one for each vector element).

The inputs are the 51 image features, the hidden layer is non-linear (sigmoid), and the output layer

is linear. The parameters for the neural networks were determined through experimentation (see the

Evaluation Section for the metrics used) and include a learning rate of 0.01, a momentum of 0.1,

and 100 hidden nodes. We use standard backpropagation with drop-out regularization to initially

train the weights. Since the output layer is linear, we improved each model by solving for the

least-squares solution as the final training step.

2https://code.google.com/p/word2vec/
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Figure 6.2: This diagram illustrates how the visual semantic model determines to what degree an
image matches a given concept. It first extracts features from the image which are passed to both
the positive neural network and the negative neural network. The word vector for the given concept
is retrieved from the vector space model and compared via cosine similarity to the predicted vectors
from the two neural networks. The similarity scores are combined and normalized for an overall
score.

Figure 6.2 shows how the networks are used to determine how well an image matches an

adjective. Let ~vp and ~vn be the vectors predicted by the positive and negative networks, respectively.

Let ~va be the vector for adjective a from the VSM and let sim(~v1, ~v2) compute the cosine similarity

between two vectors. Given an image, we can compute its score for a particular adjective using the

following formula:

score =
(sim(~vp, ~va)− sim(~vn, ~va)) + 1.0

2.0
(6.1)

Learning to predict an adjective’s vector is a harder task than learning to predict the adjective

directly and, thus, introduces a few trade-offs. First, labeling images with adjectives is a multi-

label classification problem (i.e., an image can be described by more than one valid adjective)

and our new model can only predict one vector at a time, while normally each adjective could be

predicted independently. The second trade-off is that our visual semantic model is predicting a 300

dimensional vector and has to account for every adjective. This means that it may not predict the

145 adjectives as accurately as using separate models for each adjective. The main advantage of

learning the vectors, however, is that we can do zero-shot prediction. In other words, it is not limited

to the 145 adjectives for which it was explicitly trained and can predict vectors for any adjective.

The model can assess, how ‘glad’ an image is even if it has never seen a ‘glad’ picture because the

semantic relationships of many adjectives are encoded in the vectors.
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6.2.2 Image Generator

With the vector space and visual semantic models in place, DARCI can now produce images.

Figure 6.1 shows how this process works. First, a concept/word/topic is given to the system and the

VSM finds semantically related concepts. DARCI effectively makes use of these word associations

as a decomposition of a (high-level) concept into simpler concepts that together represent the whole.

The idea being that in many cases, if a (sub)concept is simple enough, it can be represented visually

with a single icon (e.g., the concept ‘rock’ can be visually represented with a picture of a ‘rock’).

Given such a collection of iconic concepts, DARCI composes their visual representations (icons)

into a single image. This source image is then passed to the image renderer, which uses a genetic

algorithm to render the image in an artistic way that conveys the meaning of the original concept.

During rendering, the visual semantic model acts as the fitness function to guide the rendering

process.

For example, suppose the original concept given to DARCI was ‘war’. The vector space

model would send related words like ‘soldier’, ‘army’, ‘conflict’, and ‘battle’ to the image composer.

The resulting source image would be some composition of simple iconic images of the related

words. The image renderer would then render this source image according to the visual semantic

model. In this case the visual semantic model is telling the image renderer to create images that are

close to the semantic vector for ‘war’. However, since the visual semantic model was only trained

on the 145 adjectives, this results in a rendering based on the adjectives that are semantically related

to ‘war’ (in this case, ‘bloody’, ‘violent’, ‘lonely’, etc).

DARCI can also forgo the image composer and go straight to the image renderer, in which

case the image produced will be an abstract rendering of the given concept. The user could also

provide DARCI a source image of their own, like a photograph, and DARCI will re-render the

photograph in an artistic way that expresses the given concept. Since the new semantic model is the

focus of this paper, the image generator is simplified to create only abstract images (by skipping the

image composer) for all experiments.
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Rendering images based on predicting word vectors instead of predicting the adjectives

directly makes it more difficult for the image renderer to match a given adjective. However, the

power comes in taking advantage of the learned semantic structure encoded in the vectors. DARCI

can render images to convey any adjective that has at least some semantic relationship with any of

the 145 explicitly trained adjectives. Even non-adjectives, such as ‘war’, can be rendered this way

and essentially get interpreted as an adjective (i.e., ‘war-like’).

6.3 Evaluation and Results

We start with evaluating how well the semantic modeling component learns to predict word vectors

from images. We then use clustering techniques to determine how well the images that DARCI

produces actually reflect their intended adjective. Finally, we evaluate how clusters of images relate

to each other and to the word vectors on which they are based.

6.3.1 Semantic Model Evaluation

We consider two metrics: coverage and ranking loss. For each adjective, the model ranks each

test image by the similarity score obtained from the visual semantic model (Eq. 6.1). Images

labeled with the adjective (positive images) should be ranked higher than images that are negatively

examples of the adjective. Coverage represents how far to go down the list of ranked images in order

to cover all positive images (normalized between 0 and 1). Ranking loss represents the percentage

of negative images that are ranked higher than positive images. These metrics are averaged across

all 145 adjectives. We compare our visual semantic model (Vector) with a binary relevance model

(Binary) using 10-fold cross validation. The results can be seen in Table 6.1.

As expected, our visual semantic model performs worse than binary relevance on the 145

adjectives. However, the benefit is that our new model can rank images based on adjectives on

which it was never trained. We chose 10 additional adjectives for which DARCI had not been

trained and created a hold-out set of test images for them. We evaluated how well the model ranked
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Cross Validation Zero-shot
Random Binary Vector Random Vector

Coverage 0.768 0.533 0.628 0.709 0.444
Ranking Loss 0.502 0.297 0.357 0.502 0.199

Table 6.1: The 10-fold cross validation image ranking results of learning the 145 adjectives (lower
scores are better). We compare our visual semantic model (Vector) with a binary relevance model
(Binary) that learns the adjectives directly. The binary method performs better on the 145 adjectives.
However, the vector method allows the system to rank images based on adjectives it has never been
trained on (Zero-shot), which we test using a hold-out set for 10 adjectives the model has never
seen.

images based on these new adjectives (Zero-shot in Table 6.1). The results show that the visual

semantic model is successful (i.e., better than random) at ranking the test images for the 10 new

adjectives.

6.3.2 Image Evaluation

Evaluating how well an image conveys an adjective is a subjective task, especially for a system

that is also trying to generate novel images. Usually, a human survey is necessary to arrive at a

general consensus in measuring the semantic quality of images, but even then such a consensus is

not always possible (or desirable).

Clustering techniques have been developed for evaluating how well images convey semantic

relationships [76]. The idea is that images should cluster in ways that reflect the semantic similarity

of the adjectives on which they were based. For example, ‘scary’ and ‘creepy’ images should cluster

together more closely (i.e., be harder to tell apart) than ‘cold’ and ‘happy’ images because ‘scary’

and ‘creepy’ are more similar in meaning than ‘cold’ and ‘happy’. By using clustering, we may not

be able to objectively tell if a specific image conveys a particular adjective, but we can objectively

see how well the system in general is creating images that reflect the semantic relationships learned

by the vector space model. Heath et al. showed that their clustering methods were consistent with

human evaluators.

Let SEEN refer to the set of 145 adjectives that DARCI was trained on and let UNSEEN

refer to adjectives not of those 145. We selected two sets of 5 adjectives from SEEN. The first set

consisted of semantically similar adjectives, while the second set consisted of semantically distinct
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Figure 6.3: Example abstract images created for the adjectives referenced in Table 6.2. The top
row (from left to right) corresponds to the semantically similar adjectives ‘creepy’, ‘ghastly’,
‘scary’, ‘strange’, and ‘weird’. The bottom row corresponds to the distinct adjectives ‘cold’, ‘fiery’,
‘peaceful’, ‘vibrant’, and ‘wet’.

Similar Distinct
Entropy 0.857 0.714
Purity 0.360 0.440

Table 6.2: The cluster entropy and purity results from clustering images of semantically similar
adjectives compared to clustering images of semantically distinct adjectives (the adjectives are
listed in Figure 6.3). Lower entropy is better, while higher purity is better. These results confirm
that it is harder to cluster the images of similar adjectives than it is to cluster the images of distinct
adjectives.

adjectives. We had DARCI render 10 separate images for each adjective using the abstract rendering

method (i.e., no source image). The two sets of 5 adjectives are listed and example images for each

can be viewed in Figure 6.3.

The 51 global and local features from the visual semantic model were extracted from each

rendered image. We used the EM (Expectation Maximization) algorithm found in WEKA [ 69] to

cluster each set’s collection of images (using the extracted features). We then applied two metrics,

average entropy and average purity, to evaluate the quality of the clusters. The results can be seen in

Table 6.2.

The results verify that the images for the similar set of adjectives are harder to correctly

cluster than are images for the distinct set of adjectives. This is evidence that DARCI is successful

at rendering images that convey the meaning of adjectives relative to each other. In this paper, we

especially want to focus on how well DARCI can render images based on UNSEEN adjectives, or

any word for which it has never seen images.
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Figure 6.4: Example abstract images created for adjectives DARCI was never trained on and that
correspond to the results in Table 6.3. The images of the first two rows from left to right convey
the adjectives ‘bizarre’, ‘brilliant’, ‘freezing’, ‘frightening’, ‘frigid’, ‘hazy’, ‘lively’, ‘lovely’,
‘luminous’, and ‘somber’. The images of the third row convey the non-adjectives ‘Alaska’, ‘crying’,
‘fear’, ‘love’, and ‘winter’.

Adjectives Non-adjectives
Similar Dissimilar Similar Dissimilar

Entropy 0.691 0.480 0.828 0.479
Purity 0.775 0.850 0.680 0.840

Table 6.3: The average cluster entropy and purity results from clustering images conveying adjectives
(and non-adjectives) on which the system was never trained. The adjectives and non-adjectives used
are listed in Figure 6.4. Lower entropy is better, while higher purity is better. The results show that
it is harder to cluster images from semantically similar words than images from dissimilar words.
This is evidence that DARCI is successfully rendering images that convey the intended word, even
when it has never seen an example image of that word before.

We chose 10 UNSEEN adjectives and had DARCI render 10 separate abstract images for

each. We also chose five non-adjectives and again had DARCI render 10 abstract images for each.

The words are listed and example images for each are shown in Figure 6.4. We again used clustering

to evaluate the the semantic quality of the rendered images. For each of the 10 UNSEEN adjectives,

we took a SEEN adjective that was semantically similar and one that was dissimilar and had DARCI

generate 10 images for each of them. We then clustered the images for the UNSEEN adjective and

the images for the SEEN similar adjective, while separately clustering the UNSEEN images and

the SEEN dissimilar images. Finally, we averaged the metrics of the 10 UNSEEN adjectives. We

repeated this process for the five non-adjectives and the results are shown in Table 6.3.
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The similar images are harder to cluster than the dissimilar ones for both UNSEEN adjectives

and non-adjectives. This indicates that DARCI is successfully rendering the images to convey the

intended words relative to each other, even though DARCI has never seen any example images of

the words. DARCI is able to use the semantic structure learned from the vector space model to

interpolate, or more colloquially “imagine”, what images of these unseen adjectives could look

like. The clustering results give us a measurable indication of DARCI’s ability to render images

consistent with the semantic structure of the words for which they were rendered.

6.3.3 Image Cluster Visualization

We can also visualize how the clusters of images relate to one another and to the semantic vectors

on which they are based. We created a 2D visualization of how the words cluster in vector

space and compared it to a 2D visualization of how their respective images cluster in image

feature space. We created the 2D visualizations by using agglomerative clustering combined with

multi-dimensional scaling [134]. We took the 10 UNSEEN adjectives and 5 non-adjectives from

the previous experiment and chose an additional 15 SEEN adjectives that had variable semantic

similarity to the 15 UNSEEN words.

For the visualization in vector space, we used multi-dimensional scaling to find an approx-

imate 2D plot (from 300 dimensions) of the distances between each word’s vector. We then did

agglomerative clustering (using EM) with the 30 word vectors and drew the resulting clusters on the

2D plot. For the visualization in image feature space, we calculated the average feature vector of

the 10 separately rendered images for each of the 30 words. We then performed multi-dimensional

scaling (from 51 dimensions) and agglomerative clustering in the same way we did with the word

vectors. Both visualizations can be seen in Figure 6.5.

In vector space, note the distinct clusters of similar words. Also note that the non-adjectives

are generally more distant from the larger groups of adjectives, likely due to their having closer

similarities to some other non-adjectives. Overall, the image clusters roughly correspond to the

word clusters. In both visualizations there exist relative groupings for scary type words/images,
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and groupings for temperature type words/images. Even in the clusters that don’t match exactly,

the relative positions of most words are similar. For example, ‘bright’, ‘luminous’ and ‘glowing’

are still generally near each other, even though they were absorbed into different neighboring

clusters. Differences between the word clusters and the image clusters are to be expected as the

visual semantic model learns from noisy data and multi-dimensional scaling has to approximate 2D

positions from a high dimensional space. Also keep in mind that DARCI, while trying to convey the

adjective in the image, is also trying to innovate and create novel images. For example, Figure 6.6

shows variations across different renderings of the same adjective (‘fiery’).

It should be noted that visual differences between words don’t always correspond to their

semantic differences. For example, we would expect the adjectives ‘warm’ and ‘cold’ to have

distinct visual qualities. However, in Figure 6.5(a) we see that ‘warm’ and ‘cold’ are semantically

similar and so DARCI’s renderings of these adjectives can look similar. Figure 6.7 shows five

of the 10 rendered images for ‘cold’. Notice that a few of them could easily be confused with a

‘warm’ image. This seems unfortunate, but it is actually another indication that DARCI is accurately

generating images according to the semantic relationships learned by the VSM.

6.4 Conclusions and Future Work

We have introduced a sophisticated semantic model into DARCI that enables it to create images

that convey a wide variety of concepts. We have shown that the similarity of the resulting images

correspond to the semantic similarity of the concepts on which they were based, which is evidence

that the images do reflect their intended adjective. We have also shown that DARCI can render

adjectives (and even non-adjectives) that it has never seen example images of. This ability is a

rudimentary form of imagination and is analogous to a person being able to imagine, say, what a

‘majestic’ image might look like when told that ‘majestic’ is similar to ‘powerful’ and ‘beautiful’,

even though the person may have never experienced the word ‘majestic’ before.
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This simple form of imagination is not limited to images and could be applied to practically

any domain. For example, a system could generate music based on the same word vectors (e.g.,

compose a ‘happy’ song), and could then produce new music to match previously unheard concepts.

The VSM could even act as a bridge between different domains. A system could listen to a ‘sad’

song, which would be mapped near the ‘sad’ vector, and the system could then “imagine” a sad-like

image inspired by the song.

Using a VSM for these types of creative learning problems allows for more freedom, more

autonomy, and demonstrates a more robust form of intelligence. In classical machine learning, mod-

els are typically rigidly confined to the concept(s) explained by available training data, performing

poorly outside this scope. In contrast, the semantic model presented here attempts a form of transfer

learning from written text to image understanding/generation, which gives our system a chance

to perform reasonably even for concepts it has not explicitly learned. This flexibility is especially

useful for problems in the field of computational creativity, where there may not be a “best” or

“right” answer.

With the success of the semantic model, we can consider the system as a whole and move

beyond abstract images by having DARCI create more sophisticated art that conveys meaning for

more advanced concepts. For example, a user could provide a source image and DARCI could then

re-render the source image to convey any given concept. Figure 6.8 shows several examples of this

method of rendering.

As outlined in the Image Generator Section, DARCI can also create a source image of simple

icons by finding nouns semantically related to the provided concept. This collage of icons can

then be artistically rendered to communicate the original concept, as shown in Figure 6.9. DARCI

chooses to include icons based on what it has learned through the vector space model, and the result

is an original image that conveys the given concept. We intend to evaluate the DARCI system as a

whole to determine its creative ability to communicate meaning through visual art.
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We noted that semantic differences between words don’t always correspond to visual

differences. One idea to overcome this is to use a hierarchical approach that locates different

densities or clusters within the word vector space: a top-level visual semantic model that learns

to identify different clusters, and separate visual semantic models for each cluster that focus on

distinguishing among the individual words in a given cluster.

We would eventually like to extend the ideas in this paper beyond adjectives to include

nouns. We want to enable DARCI to create actual (non-abstract) pictures of nouns without relying

on a provided source image or a database of icons. This will most likely require a deep learning

system that leverages semantic information to discriminate between pictures of nouns, as done in

other studies [57]. A deep generative model could potentially generate images by visualizing how

the model has learned features at various levels. Recently, deep neural systems have already had

success in automatically generating images [45, 68, 97].
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(a) Vector Space (300 dimensions)

(b) Image Feature Space (51 dimensions)

Figure 6.5: A 2D visualization of the spacial relationships between the word vectors (a), compared
to the spatial relationships of their respective images (b). Red words are adjectives on which DARCI
was never trained, while green words are non-adjectives. The image clusters/positions roughly
correspond to the word clusters/positions. This demonstrates that DARCI was able to render images
that at least partially convey the meaning of adjectives, and even of words on which DARCI was
never trained, including non-adjectives.
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Figure 6.6: Five of the 10 abstract images rendered for the adjective ‘fiery’. Notice the variation
between different renderings as DARCI is trying to innovate, in addition to conveying the adjective.

Figure 6.7: Five of the 10 abstract images rendered for the adjective ‘cold’. Notice that some of the
images could easily be confused with ‘warm’ due to ‘cold’ being semantically related to ‘warm’.

Figure 6.8: Images DARCI rendered (bottom row) after being provided a source image (top row)
and a concept. From left to right, the concepts are ‘fiery’, ‘Alaska’, and ‘hunchback’. Although the
source image was given, DARCI discovered its own way to render the image to convey the given
concept.

Figure 6.9: Images that DARCI has rendered after being given only a concept. From left to right,
the concepts are ‘bizarre’, ‘war’, ‘art’, ‘murder’ and ‘hunger’.
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Chapter 7

Before A Computer Can Draw, It Must First Learn To See1

Abstract

Most computationally creative systems lack adequate means of perceptually evaluating the artifacts

they produce and are therefore not fully grounded in real world understanding. We argue that per-

ceptually grounding such systems will increase their creative potential. Having adequate perceptual

abilities can enable computational systems to be more autonomous, learn better internal models,

evaluate their own artifacts, and create artifacts with intention. We draw from the fields of cognitive

psychology, neuroscience, and art history to gain insights into the role that perception plays in the

creative process. We use examples and methods from deep learning on the task of image generation

and pareidolia to show the creative potential of systems with advanced perceptual abilities. We also

discuss several issues and philosophical questions related to perception and creativity.

1Derrall Heath and Dan Ventura, Before A Computer Can Draw, It Must First Learn To See, Proceedings of The 7th
International Conference on Computational Creativity, to appear, 2016
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7.1 Introduction

Some people seem to have a natural talent for drawing, while others only wish they could draw well.

Many of these people have turned to books and teachers to help them develop their drawing skills.

One of the most widely used and consistently successful books for teaching people how to draw

is titled Drawing on the Right Side of the Brain [48]. This book uses insights from neuroscience

to help potential artists improve their drawing skills. One of the main premises in the book is that

drawing is not a skill of hand, paper or pencil, but a skill of perception. To quote from the book:

“The magic mystery of drawing ability seems to be, in part at least, an ability to make a

shift in brain state to a different mode of seeing/perceiving. When you see in the special

way in which experienced artists see, then you can draw... Drawing is not very difficult.

Seeing is the problem, or, to be more specific, shifting to a particular way of seeing.”

This idea can extend to any kind of creative ability. Before one can create visual art, compose music,

or invent recipes, one must first learn to see, hear/listen, or taste, respectively. Even creative tasks

like writing poetry must ultimately be grounded to what has been experienced through perception.

Our ability to perceive influences how and what we create. Just as drawing is really about perceptual

skills, our ability to think creatively and do creative things heavily depends on how we perceive and

understand the world.

In his book, The Anthropologist On Mars, Oliver Sacks recounts the story of Shirley Jennings,

who had been blind since early childhood and had surgically regained his sight at the age of 50 [142].

After the operation, he could not immediately see, could not recognize his family, could not pick out

separate objects, and struggled with depth perception. Over several months, his brain had to learn

how to see and make sense of an incredible amount of new information. It was a slow and difficult

process reconciling his non-visual mental model of the world with this new form of perception. As

he learned to make use of his new sense, things that were aesthetically beautiful to him differed
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from those others found pleasing. He eventually took painting lessons and created paintings that

demonstrate his unique taste in visual art2.

Shirley’s case, along with several other vision disorders and anomalies like blindsight [173],

Capgras syndrome [50], and agnosia [53], has helped to uncover the work and learning that our

brain undertakes in order for us to perceive and understand the world. In this paper we argue that

the ability to perceive is a necessary and influential piece of the creative process. It enables us to

learn a mental model of the world, to understand and continually evaluate our own creations, and

to infuse what we produce with meaning. Indeed, even perception itself is a creative act that our

brains regularly perform, although often subconsciously. The necessity of perception applies to the

field of computational creativity, in which one of the goals is to build computational systems that

can autonomously create art. Before a system can learn to create art, we argue that it must first learn

to perceive.

We proceed by exploring the relationship between perception and creativity and then discuss

the role of perception in computational systems. We then consider how state-of-the-art computer

vision methods can enhance the creative potential of systems designed for visual art. We demonstrate,

using deep neural networks, how perceptual skills facilitate imagination and can lead directly to

generating novel images. We then elaborate further on why perception itself is a creative process and

demonstrate a form of creative perception, called pareidolia, using deep neural networks. Finally, we

discuss philosophical issues and the implications of our ideas and elaborate on what more advanced

perceptual abilities could mean for the future of computational creativity.

7.2 Perception and Creativity

When talking about visual art, Csı́kzentmihályi says, “...the aesthetic experience occurs when

information coming from the artwork interacts with information already stored in the viewer’s

mind...” [36]. In other words, the viewer’s appreciation (perception) of art is determined by his

current mental model of the world. Likewise, the artist has her own mental model of the world and
2http://www.atfirstsightthebook.com/shirls-paintings.html
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created the artwork to convey meaning according to that mental model. How was that mental model

established? It’s reasonable to say that it was learned through a lifetime of experiences, and people

experience the world through perception. Everything we know and understand about the world has

come through our senses. Every memory and every thought we have is in terms of what we have

experienced in the past [7].

It is difficult to comprehend what life would be like without perception because it is so

fundamental to how we think. Would it even be possible to think, imagine, or create anything at all

without some kind of input? There is no definite answer to that question; however, studies of long

term sensory deprivation and solitary confinement suggest significant mental deterioration [ 1, 65].

Perception directly influences our ability to think and understand, and the better and more varied

our perceptual abilities are, the more we are able to think about, imagine, and ultimately, create.

We can take this idea further and say that, with our current senses, there are thoughts we cannot

think simply because we lack additional (or adequate) senses to know how to think them. To quote

Richard Hamming [70]:

“Just as there are odors that dogs can smell and we cannot, as well as sounds that dogs

can hear and we cannot, so too there are wavelengths of light we cannot see and flavors

we cannot taste. Why then, given our brains wired the way they are, does the remark

‘Perhaps there are thoughts we cannot think,’ surprise you? Evolution, so far, may

possibly have blocked us from being able to think in some directions; there could be

unthinkable thoughts.”

We need perception (i.e., input) in order to build a mental model that can facilitate thinking, which

can then facilitate creativity. Indeed, as noted earlier in the case of Shirley Jennings [142], the

mental model itself is what does the perceiving. Our eyes merely translate light into brain signals,

but it is our brain that must learn to make sense of that information, which then allows us to think in

those terms.

Imagination is clearly tied to this idea and is closely linked with creativity in cognitive

psychology literature [59]. Imagination is typically generalized as thinking of something (real
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or not) that is not present to the senses. Most psychologists agree that our perceptions (senses),

our conceptual knowledge, and our memories make up our mental model and form the bases of

imagination [10]. As we perceive the world and have experiences, our mental model is formed by

establishing and strengthening connections in our mind. These connections form concepts, which

are in turn interconnected. Creative imagination is achieved by combining these connections and

experiences in different ways that produce novel results.

7.2.1 Thinking Beyond Natural Perception

It is possible for us to indirectly experience things outside of our perceptual abilities by translating

other modalities into our range of senses. For example, we visualize infrared light by shifting it into

the visible spectrum. We create charts and graphs that represent data we cannot observe directly,

like barometric pressure, or electromagnetic fields. In this way we can vicariously think in terms of

other modalities and perhaps even be creative in those modalities.

This idea is applied explicitly in the case of sensory substitution [3], where one sense can

take the place of another that has been lost. For example, devices have been made that can allow

blind people to literally “see” with their tongue. They work by mounting a video camera on the

blind person’s forehead, which sends video data to a plate that sits on the person’s tongue. This

plate contains a grid of “pixels” consisting of pressure points. These pressure pixels correspond to

grayscale video by pressing harder where the image is brighter and pressing lighter where the image

is darker. The tongue can then “feel” the video information and, after several months of training,

a blind person’s brain starts to see images in their mind. It’s certainly not high resolution, but it’s

enough to allow a blind person to read large print text and navigate new terrain.

Another way that we humans can communicate and understand things that we ourselves have

not perceived directly is through language. In other words, through verbal/written communication

we can experience by proxy what others have directly experienced [181]. In this case, language acts

as an analogy between two people’s experiences. Our interpretation of a described experience must

still be grounded by our personal perceptions and experiences [7]. For example, it is very difficult
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to describe colors to a congenitally blind person because colors are inherently visual and the blind

person has no visual grounding at all. This is why even creative literature and poetry also require

perception—the writer must have experiences to write about and the reader must have experiences

with which to interpret the writing.

Art, whether it be visual, written, musical, etc, acts as a metaphor between the experiences

of the artist and the experiences of the receiver. Successful artists are creative because they have a

unique perspective on the world that they are trying to communicate through their art, and people

appreciate art that helps them gain new perspectives. In other words, having unique experiences

and perceiving the world differently plays a role in the creative process. It has been postulated in

cognitive psychology that creative people literally see the world differently [11], which is in turn

why they tend to think differently and can produce novel things and ideas.

7.2.2 Quality of Perception Affecting Visual Art

There have been studies analyzing several famous artists with documented visual impairments [107].

For example, Claude Monet developed cataracts, while Edgar Degas began to suffer from retinal

disease. These studies point out that the earlier works of these painters (when they had good

eyesight) were better formed and detailed, while later works (made with poorer eyesight) became

more and more abstract. These studies generally conclude that the failing eyesight of the artists

did have a large impact on the quality and style of their work. Although some researchers say that

this was not necessarily a bad thing, and some artists would use their visual impairments to their

advantage by removing their corrective lenses for certain paintings.

These artists had issues with just their eyes, but what about cognitive impairments involving

vision? How do different cognitive disorders of the brain affect artists’ work? This question was

explored by Anjan Chatterjee, where he reported on multiple studies analyzing the drawing ability

of several artists with various cognitive disorders, including spacial neglect, visual agnosia, epilepsy,

TBI, etc [20]. The results for many of the disorders, like epilepsy were mixed, but artists with
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disorders more specific to vision, like agnosia, had some notable peculiarities to their drawing

ability.

For example, one artist with a type of visual agnosia could create beautiful drawings as

long as the item he was drawing was continuously right in front of him. However, if he was

asked to draw from memory (e.g., draw a ‘bus’), then his drawings were simplistic and often

unrecognizable. Another artist, with a traumatic brain injury, produced drawings that were more

abstract and “expressive” than drawings produced before the accident. Although these studies

appear anecdotal due to the rarity of many of these disorders, it is apparent that how the brain sees

and understands the world does affect the ability to draw.

There are several cases of successful artists who are blind, and one artist in particular has

received a lot of attention because he is congenitally blind [2]. This blind man has a remarkable

ability to paint and draw pictures that are consistently meaningful to sighted people. He uses special

paper and pencils that form ridges that he can feel as he draws. He first explores an object with his

hands and then, remarkably, can draw it from different perspectives. He’s never been able to see,

yet can understand perspective. His case provides insight into how the brain perceives and builds

invariant mental representations of the world.

The blind artist’s case is related to sensory substitution, where a blind person can “see”

through touch, and further supports the idea that the brain is what processes and makes sense of

perceptual input. Researchers who study blindness and visual art have indicated that vision and

touch are linked and make use of similar processes and similar features in the brain [86, 89]. The

brain can do remarkable things even when the quality of the input signal is disrupted or re-routed.

Perception is really about being able to build these mental models and using them to interact with

the world. It’s not that visual art requires vision, but that creating visual art requires some form of

perception that establishes and continually informs the artist’s mental model.
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7.3 Perception and Computational Creativity

We’ve discussed the role of perception in human creativity, but what about computational creativity?

Certainly, there’s no requirement that computers can only be creative in the same way as humans.

However, we are positing that perception is fundamentally a necessary component of the creative

process. So, just as perception is important for human creativity, perceptual ability is also important

for computational creativity. The exact methods of perceiving and creating may be different than

those of humans, but some form of perceptual grounding is requisite for a truly creative system.

Colton proposed the creative tripod as necessary criteria for a creative system [24]. A

creative system must have imagination, which is analogous to producing novel artifacts; it must

have skill, which corresponds to generating quality artifacts; and it must have appreciation, which is

the ability to recognize the novelty and quality of its own artifacts (i.e., self-evaluation). In other

words, there must be a perceptual component that directs the creative process by helping the system

explore new ideas (imagination), and understanding which ideas are worth pursuing (appreciation).

Many creative systems exist across several domains that can generate novel artifacts. Most of

these systems, however, are merely mimicking example human-created artifacts without understand-

ing or appreciating what they are producing, like a parrot mimicking human speech. For example,

the PIERRE system generates new crockpot recipes according to a model trained on user ratings of

existing recipes, but it has no sense of what the recipes actually taste like, only that humans have

liked similar recipes [116]. In music, there are several systems that analyze patterns and n-grams

from existing melodies, then probabilistically draw from those distributions or construct grammars

when producing music [33, 129]. Likewise, poetry systems are also often based on corpora and

n-gram distributions, without much understanding of what the words actually represent [30, 119].

Other existing creative systems produce artifacts according to hand engineered metrics and

databases, where the ability to appreciate and perceive what is produced is limited to those explicit

metrics. For example, some musical systems rely on rules and metrics based on musical theory

in order to produce and evaluate melodies [47, 111]. Visual art systems often use some form of

evolutionary algorithm for producing art, which involves a fitness function by which the art is
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evaluated at each iteration. The fitness functions in these systems are usually based on models

trained using extracted image features in order to evaluate aesthetic quality or novelty [46, 106]. In

these cases the perceptual ability is ultimately limited to those specific features.

There are some creative systems that do attempt to incorporate a sophisticated model of

perceptual ability. For example, there is a system that invents recipes based on actual chemical

properties of the individual ingredients [160]. It at least has some understanding of what would

actually taste good in a recipe and isn’t limited to just producing something that is mimicking

human examples. The DARCI system extracts various image features and trains neural networks to

evaluate how well the images convey the meaning of particular adjectives [ 73]. Although DARCI

still relies on extracting specific low level features, it at least attempts to learn the semantic qualities

related to those features (in the form of adjectives). In this way DARCI, more than other visual art

systems, is able to at least partially perceive meaning in the art that is produced.

The example systems just described can produce interesting and novel artifacts. However,

without advanced perceptual abilities, the systems lack any notion of understanding and intention-

ality. The systems can produce something, but can’t necessarily tell us why, or what it means.

They are instances of Searle’s Chinese room [144], that simply follow rules and algorithms, with

no comprehension of what is taking place. Just as humans cannot think beyond our perceptions,

computational systems cannot think beyond theirs. Some have argued that even human thought and

creativity is subject to the Chinese room analogy at the biological (cellular) level. This may be true,

but if we aim to build systems that can be creative at a human level, then they must at least have

human-level perception.

Somewhat surprisingly, in the case of visual art, current creative systems rarely use state-of-

the-art computer vision techniques, like deep neural networks. Certainly having more advanced

perceptual abilities would improve the quality of their art by enabling these systems to understand

more concrete things. For example, a system could conceivably create an original image of a dog, if

it knew how to see and recognize dogs. It seems, then, that incorporating advanced computer vision
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techniques, especially ones tied to semantic understanding, should be a high priority in the field of

computational creativity.

7.3.1 Visual Art and Deep Learning

The last few years have shown a resurgence of deep neural networks (DNNs), especially for

computer vision tasks, where they hold current records for several vision benchmarks [52, 153].

Deep learning has the potential to significantly improve visually creative systems as well. A key

advantage of DNNs is that they are capable of learning their own image features, while the visual

art systems described above all rely on manually engineered features. Thus, deep learning models

can provide more advanced perceptual abilities by building better “mental” models of the world.

Some of these deep learning models can already be used directly to improve current artistic

systems. In recent work on DARCI, we built a sophisticated semantic model that uses a shallow

neural network to associate image features with a vector space model [73]. Here we can show

significant improvement by replacing the shallow neural network and extracted features, with a

DNN (and the raw image pixels as input). Specifically, we used a deep learning framework, called

Caffe [82], and started with the CaffeNet model, which was first trained to recognize 1000 different

items using the ImageNet 2012 competition data [141]. We then further trained and fine-tuned the

model on DARCI’s image-adjective dataset (with a vector space model).

The DARCI system is capable of zero-shot prediction (using the vector space model),

meaning it can successfully evaluate images for adjectives that it was not explicitly trained on. We

compare DARCI’s original results [73] with our deep neural network version in Table 7.1. The

results show significant improvement using the DNN to evaluate images, and fully incorporating a

deep model into the DARCI system will likely help it to produce more semantically relevant images.

In fact, DNNs have already been used to generate images directly [45, 68, 97]. One particular

method, called gradient ascent [147], works by essentially using the DNN in reverse. The trained

network starts with a random noise image and tries to maximize the activation of the output node

corresponding to the desired class to generate. The network then backpropagates the error into the
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Random DARCI Deep Network
Coverage 0.709 0.444 0.202
Ranking Loss 0.502 0.199 0.102

Table 7.1: Zero-shot image ranking results comparing the DARCI system with our modification of
DARCI that uses a deep neural network (lower scores are better). We used the same test set from
the original DARCI paper [73]. The use of a DNN improves the system’s ability to perceive and
understand adjectives in images.

Figure 7.1: Four images generated using gradient ascent from the deep neural network trained on
the DARCI dataset. From left to right the images were generated for the adjectives ‘vibrant’, ‘cold’,
‘fiery’, and ‘peaceful’. These images are essentially visualizations of the features that the model has
learned and demonstrate a form of imagination.

image itself (keeping the network weights unchanged) and the image is slightly modified at each

iteration to look more and more like the desired class.

We demonstrate gradient ascent using the same deep model that we trained with the DARCI

image-adjective data set, and the resulting images can be seen in Figure 7.1. These images can be

thought of as visualizations of the features learned by the model for each adjective. Each adjective’s

features seem fairly general, except in the case of ‘peaceful’, where the visualized features are

consistent with the fact that most of the training images depict calm beaches. It is theorized that

imagination in humans can be partially thought of as running our vision processing systems in

reverse [7], in which case our deep neural network is analogously demonstrating its own kind of

imagination.

The generated images seem fairly abstract, which is expected for adjectives, especially since

the DARCI data set contains a wide variety of scenes, objects, genres, and styles for each adjective

label. Deep neural networks are becoming powerful enough to render actual recognizable objects

using the gradient ascent method. The ImageNet 2012 competition consists of classifying 1000

different categories of objects ranging from various animals, to clothing, to household items. We
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Figure 7.2: Images generated using gradient ascent from the CaffeNet model and the GoogleNet
model, both trained on the 2012 ImageNet challenge data. The first two rows of images are from
CaffeNet and, from left to right, were generated for ‘pool table’, ‘broccoli’, ‘flamingo’, ‘goldfish’,
‘bald eagle’, ‘lampshade’, ‘starfish’, and ‘volcano’. The last row of images are from GoogleNet and
were generated for ‘bald eagle’, ‘tarantula’, ‘starfish’, and ‘ski mask’. These original images are
certainly not photo realistic, but it is still fairly easy to identify each image’s subject. Notice that the
two models have different styles because they have learned different features.

took the CaffeNet model (used as the base for the DARCI model), as well as another successful

model called GoogleNet [153], and generated several images depicting objects from the 1000

possible categories. The resulting images for several objects can be seen in Figure 7.2.

While the images are not photo-realistic, they are original and do resemble the intended item.

Notice how the two models generated images with different styles as each model learned different

features. The generation of images using DNNs is currently an active area of computer vision and

machine learning research, and several researchers have produced impressive results [45, 97]. The

field of computational creativity has yet to significantly leverage the potential of deep learning,

although some have alluded to it [77]. However, some researchers have already begun incorporating
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deep learning into evolutionary art systems that are capable of rendering images that resemble

concrete objects, with interesting results [120].

7.4 To See Is To Create

We have argued that perception is an important aspect of creativity and that more advanced perceptual

abilities can lead to more sophisticated creative systems. We also argue that perception is a creative

act in its own right. When light hits a person’s eyes, it is converted into signals, which travel to the

visual cortex via the optic nerve. The brain itself does not receive any light, only information about

the light. The brain must then learn to make sense of that information, and an image in the mind is

fabricated, and that is what a person “sees”. Our brain over our lifetime has built a mental model of

the world through the various signals it has received from our senses. This mental model is what

determines our personal reality, and it is an impressively creative act [79, 133].

We don’t think of perception itself as a creative act because it happens instantly, constantly,

and seemingly without effort. We take for granted how difficult perception is because it is an

ordinary part of life, and we’ve become desensitized to it. However, even the most advanced

state-of-the-art computer intelligence cannot process visual information as well as a child can

almost instantaneously. The case of Shirley Jennings [142], in which he spent months learning how

to see for the first time at age 50, and other cognitive visual disorders, shed light on the tremendous

amount of work that goes into vision.

Optical illusions also provide insights on how the brain understands visual input and

constructs images in the mind [79]. Different people given the same input, experience it differently.

A person’s subjective experience is unique to them, an act of novelty by their creative brain. This

idea became even more evident when a particular image of a dress sparked huge debate on social

media over the color of the dress [94]. Some saw white/gold, others saw blue/black, because our

brains construct differing realities based on our mental models.

If we accept the idea that our brains are doing the actual creating of the images we see, then

what is the artist doing when she paints a picture? The artist is providing a set of constraints, in
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the form of a painting, that viewers use to create an image in their minds. The more realistic a

painting is, the more it constrains the viewer to mentally create it a certain way. The more abstract

or ambiguous the painting is, the less it constrains the viewer, and the more variety and novelty in

the individual aesthetic experiences.

7.4.1 Pareidolia

Attributing creativity to a system just because it has some perceptual abilities doesn’t appear

very compelling. However, there are some perceptual tasks that seem more creative than others.

Pareidolia is the phenomenon of perceiving a familiar pattern where none actually exists. For

example, seeing constellations in the stars, faces in ordinary things, objects in blotches of ink, or

shapes in the clouds. Sometimes these are considered mistakes or optical illusions, but they can

actually be a deliberate act of creativity. When a child says a cloud looks like a particular animal,

we admire her imagination, especially when we can then see the shape too. We obviously know it’s

a cloud, but we have chosen to see it as something else.

Pareidolia is a creative act because it is is not about seeing things for what they are but

seeing things for what they could be. Creative systems capable of pareidolia may have applications

in visual communication, advertising, story telling, illustration, and non-photo-realistic art. As it

stands, there are few computational systems developed for automatically performing pareidolia.

One group of researchers developed a system for recognizing “faces” in ordinary pictures and then

automatically determining the emotion expressed by the “face” [80]. Here we demonstrate how

deep learning can be used for pareidolia and argue that it is a form of creativity because the model

is interpreting images in novel ways.

Finding Faces

Seeing faces in objects is by far the most common type of pareidolia and provides a simplified

version of the problem to begin with. The initial task is to use a deep neural network (DNN)

to identify what aspects of an image could make up a face. We then have the DNN iteratively
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emphasize those features, using gradient ascent, until the “face” that the network sees emerges in

the image. We use two different DNN models trained on faces. The first is called VGG-Face and

was trained to recognize the faces of over 2500 different celebrities [130]. The second model, which

we’ll call AGE-Face, was trained to determine the age of a person (one of eight age ranges) in a

provided image [98].

We perform pareidolia by having each network, when given an image, determine the output

node (corresponding to a class) with the highest activation. The model then performs the gradient

ascent algorithm in an attempt to increase that node’s activation further, thus emphasizing the

strongest features it found initially. Figure 7.3 shows example pareidolia images generated with

both the VGG-Face and AGE-Face networks. The networks generally do a decent job of drawing

(cartoony) faces on the source images in ways that make sense, although some are harder to

appreciate. The VGG-Face model tends to draw more realistic facial features (i.e., eyes, nose, etc)

than the AGE-Face model. However, the VGG-Face model will often highlight isolated facial

features (especially when a face in the source image is not apparent to humans), while the AGE-Face

model tends to keep the facial features together for a full face.

Finding Objects

We now move on to a harder version of pareidolia in which we ask the model to find and highlight

any kind of object in an image. We again use the CaffeNet model that was trained on the 1000

category 2012 ImageNet data; thus the model could potentially see any of those 1000 items in an

image. We use the same method as just described in the faces version. The model is given a source

image, then performs gradient ascent on the source image in order to further maximize the highest

activated output node. We applied this method to several source images, and the results can be seen

in Figure 7.4.

For some of the examples it is easy to see why the model did what it did. For instance, it

is understandable how the [Figure 7.4, 1st] source image looks like a mask, and we can see how
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Figure 7.3: Images created for face pareidolia using deep neural networks. The top row are the
source images, the second row are faces highlighted by the VGG-Face model, and the third row are
faces highlighted by the AGE-Face model.

the modified image came from it. However, it is more difficult to appreciate how the model saw an

‘arctic fox’ in the [Figure 7.4, 2nd] source image. Other examples are hard to relate to initially, but

on inspection, we can start to see the connection. For example, the [Figure 7.4, 4th] source image

looks, to most humans, like a spider, but the model saw it as a ringworm. After considering the

resulting image, we can at least appreciate why the model thought ringworm.

This leads to an interesting discussion about perception and creativity. If a person says that

a particular cloud looks like a horse, then if we can also see it, we think the person has imagination.

However, if we can’t see it ourselves, then we don’t necessarily praise the person’s imagination.

Conversely, if a person says that a photo of a horse looks like a horse, we also don’t admire the

imagination, and we end up wondering why they bothered to say something so obvious. We

appreciate creativity when it is different from the norm, but not so different that we can’t connect.

When it comes to visual art, how a person sees will influence their art; thus, people that see

things differently (but not too differently) can potentially be more creative with their art. Using
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Figure 7.4: Images for object pareidolia using CaffeNet, trained on the 2012 ImageNet data for
1000 object categories. From left to right, the items highlighted in the images (bottom row) from
each source image (top row) are ‘mask’, ‘arctic fox’, ‘scorpion’, and ‘ringworm’.

deep learning models for pareidolia helps us to understand how these models are actually seeing,

and it helps us to visualize what features are being learned. The features learned by each model

are likely different than the features that human brains use when processing visual input. This is

why the CaffeNet model sees an arctic fox in the [Figure 7.4, 2nd] source image, but most humans

would say it looks like an elephant.

If a computational system perceives things differently than a human, and accordingly

produces different kinds of art, then is the art only viable if we humans can relate to it? It has

been suggested that the most creative and influential people are ones that see (and therefore think)

differently [11], and Colton argues that computational systems that see differently than humans

have enhanced creative potential [31], but is that true only to an extent? Could a computational

system that perceives differently (even radically differently) than humans actually help us to extend

our notions of what constitutes good art?

To go even further, could we build a system capable of understanding and creating art

beyond the capabilities of current human perception? For example, could we build a system that

creates infrared art? Or electromagnetic field art? Or gravity art? Or some other kind of art? Would

there be any purpose in doing so? Or perhaps augmenting computational systems with other forms
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of perception could help them gain a richer, deeper understanding of the world, and allow them to

create visual art that can be even more meaningful to humans.

7.5 Conclusion

We have argued that perceptual abilities are fundamental to the creative process. We have discussed

the relationship between perception and creativity from a cognitive psychology perspective and

also in terms of computational systems. We have even asserted that perception itself is a creative

act and that perceiving things differently can facilitate creative thinking. We’ve demonstrated how

state-of-the-art deep neural networks can be used to create images and perform certain types of

imagination, and we’ve also demonstrated how they can see creatively through pareidolia.

As with humans, advanced perceptual abilities can provide a foundation on which com-

putational systems can think, imagine, and create. In the field of artificial general intelligence,

current trends and ideas are also advocating the need for perception, and recent general AI systems

are learning to perform intelligent tasks exclusively from raw inputs [72, 114]. They argue that

having a system learn from the ground up, with raw inputs (e.g., raw pixel values), is essential

for general/adaptable intelligence. Perceiving and understanding various raw inputs can act as a

basis for a large variety of intelligence tasks, and learning how to perceive and perform for one task

should transfer to additional tasks. Furthermore, advanced cognitive ability, such as language and

reasoning, could emerge naturally from these perceptual primitives as they form connections and

hierarchies of understanding.

The idea of perceptual primitives can also be applied to a general notion of computational

creativity. Ideally, we would like to develop a universal creative process, which allows for con-

nections to form across multiple domains, experiences, and knowledge. Perceptual abilities for

multiple modalities establish an internal mental model of the world, which can provide a system

with freedom and adaptability to be creative in any of its modalities or combination of modalities.

For example, a system trying to invent recipes could benefit from visually recognizing ingredients

(in addition to understanding how they taste) and could invent new recipes by substituting similar
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looking ingredients. It is possible that developing and incorporating advanced perceptual abilities in

computational systems will not only increase the creative potential of those systems but may also

facilitate the abstraction of a domain-independent, general creativity “algorithm”.
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Chapter 8

Autonomously Conveying Inspiration In Visual Art Using Deep Neural Networks1

Abstract

In visual art, the communication of meaning or intent is an important part of eliciting an aesthetic

experience in the viewer. Building on previous work, we present several enhancements to the

DARCI system that extend its ability to express meaning and intent through the images it creates.

We first improve DARCI’s semantic model by incorporating deep neural networks that have

been trained to assess the aesthetic quality, the artistic style, and the semantic content of images.

This improved semantic model also allows DARCI to find inspiration by looking at pre-existing

images. Additionally, we have built an aesthetic rendering component that enables DARCI to more

consistently produce aesthetically pleasing images. Finally, we added a title/description generator

that allows DARCI to provide additional insight into how and why it creates art the way it does.

We use an online survey to show that the system is successful at creating visual art that expresses

meaning and is generally appreciated by human viewers.

1Derrall Heath, and Dan Ventura, Autonomously Conveying Inspiration In Visual Art Using Deep Neural Networks,
International Journal of Semantic Computing , to submit, 2016
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8.1 Introduction

DARCI (Digital ARtist Communicating Intention) is a system for generating original images that

convey meaning and is part of ongoing research in the subfield of computational creativity. Central

to the design philosophy of DARCI is the notion that the communication of meaning in art is a

necessary part of eliciting an aesthetic experience in the viewer [36]. There are few systems we know

of that attempt to autonomously generate images that communicate meaning. The WordsEye system

tries to generate 3D scenes based on written descriptions [ 34]. The Story Picture Engine [85] and

the Text-to-Picture Synthesis System [179] are both systems built to do automatic text illustration

(i.e., to visually tell a story or to graphically communicate the gist of text). AARON [109] and The

Painting Fool [25] are both systems designed to autonomously create visual art in ways meaningful

to human viewers. DARCI is unique from other computationally creative systems in that DARCI

creates novel, artistic images that explicitly convey concepts. By incorporating a sophisticated

semantic model grounded in perception, DARCI is able to internally represent the meaning of

concepts, which facilitates the expression of these concepts through images in innovative ways.

It has recently been argued that in order for computational systems to be considered au-

tonomously creative, they must have adequate perceptual capabilities in their respective domain [74].

Creative systems must be able to “understand” to some degree what it is they are producing in order

for the system to truly be considered intentional. In this paper, we improve DARCI’s semantic

model by incorporating deep neural networks that have been trained to assess the aesthetic quality,

the artistic style, and the semantic content of images. This improved semantic model allows DARCI

to better evaluate and understand its own artifacts in order to produce semantically relevant and

aesthetically pleasing images. It also allows DARCI to evaluate other existing images in order to

find inspiration and generate its own semantically related images in response.

Although breakthroughs in deep learning have demonstrated state-of-the-art performance

on many computer vision tasks [52, 153], they are still generally inferior to human perception.

Even if computational systems could visually perceive as well, and even surpass, humans, how

they perceive would be different than humans because they use different methods and features.
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In systems producing visual art, these differences in vision could lead to differences in aesthetic

and semantic preferences. However, Colton argues that computational systems that see differently

than humans have enhanced creative potential [31]. In cognitive psychology, it has been suggested

that creative people literally see the world differently [11], which is in turn why they tend to think

differently and can produce novel things and ideas.

Nevertheless, if a computational system perceives things differently than humans, and

accordingly produces different kinds of art, then is the art only viable if we humans can relate to it?

When attributing creativity, there is generally a balance between novelty and typicality [138]. A

creative artifact should be novel and different than what has been produced before, but it should still

be a typical instance in the domain. If it is too different from the norm, then people may not be able

to connect and relate to it, and thus they may not appreciate its value.

DARCI’s perceptual abilities are different than humans, but we want human viewers to

be able to appreciate DARCI’s art. With this in mind, we built a new component into DARCI

that allows it to create a title for its artwork, which will help to communicate DARCI’s intent in

creating the art. Additionally, DARCI can provide a detailed explanation of each step of the image

generation process, which will allow human viewers to understand how DARCI is perceiving and

why it did what it did in producing a particular image. Our hypothesis is that the extent in which

people understand what/how DARCI is actually perceiving and why DARCI makes certain artistic

choices, will influence the extent in which people appreciate and admire the art DARCI produces.

We begin by providing an overview of the DARCI system and then go into detail for

individual new components. We then demonstrate the full DARCI system and show several artifacts

that DARCI has produced. We then describe our evaluation methods and report on and analyze the

results. Finally, we provide a summary, discuss our conclusions, and elaborate on future work.

8.2 The DARCI System

DARCI operates by first being given as input a preexisting source image, which can be a painting, a

photograph, or any kind of image. DARCI then analyzes the source image and, in response, creates
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its own artistic, novel image that is somehow related or inspired by the original source image. The

goal is for DARCI to evaluate and extract semantic content from the source image, in order to

acquire some kind of inspiration, and then generate an image that conveys whatever inspiration it

found. Ideally, a human viewer should be able to appreciate the resulting image and see how it was

influenced by the source image.

At a high level, DARCI is composed of two major subsystems, a semantic model and an

image generator as shown in Figure 8.1. The semantic model includes a vector space model (VSM)

that learns semantic relationships between words, and several deep neural networks trained to assess

the artistic style, the aesthetic quality, and the semantic content of images. The image generator

uses the image composer to create an initial sketch, then uses the semantic renderer to render that

sketch to reflect certain semantic qualities. Finally the aesthetic renderer is used to make the final

image more aesthetically appealing. Additionally, a title/description generator creates a title (and

optionally a description) for the the final image. Here we outline each component individually and

focus primarily on the components and algorithms that have been added and modified since the last

iteration of DARCI. We will then explain how each piece works together to produce meaningful art.

8.2.1 Vector Space Model

To enable DARCI to express semantic information through pictures, it must first have its own

semantic knowledge that can influence the images it creates. Using a vector space model (VSM),

we can leverage semantic information gained through written text and transfer it to the task of

meaningful image generation. In this iteration of DARCI we use the same VSM as was used in the

previous iteration. We provide a simple overview, but more details can be found in prior work [73].

We use a VSM, called the skip-gram model [112]. The skip-gram model is a neural

architecture that analyses a large corpus and learns to predict the surrounding words given a current

word. During training, the skip-gram model consequently learns vector representations for each

word, which encode semantic information. Words similar in meaning will have vectors that are close

to each other in “vector space”. These word vectors capture other interesting semantic relationships
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Figure 8.1: A high level overview of the DARCI system. The semantic model takes a preexisting
source image and the vector space model is used in conjunction with several deep neural networks to
evaluate the semantic content and style of the image. The image generator then uses the vector space
model to identify concepts associated with the semantic content of the source image. The concepts
are composed into a source image (image composer) that is rendered to convey the discovered
semantic content using a genetic algorithm (semantic renderer) that is governed in part by the deep
neural networks. The resulting image is then further rendered to be more aesthetically pleasing and
to resemble the source image’s style (aesthetic renderer). The final product is a novel image that is
inspired by the original source image. A title (and optionally a description) is also generated based
on both the original source image and the final image.

that are consistent with arithmetic operations. For example, vector(“king”)− vector(“man”) +

vector(“woman”) results in a vector that is closest to vector(“queen”).

These semantic vectors allow DARCI to find concepts related to a given word and to assess

the similarity in meaning between words, which will aid DARCI in creating meaningful images.

We use a publicly available implementation of the skip-gram model2 and a lemmatized Wikipedia

corpus to learn the word vectors [44]. The skip-gram implementation is used with out-of-the-box

parameters except for the vector size, which is set to 300. The choice of 300 provides a balance
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between encoding enough semantic information to be useful and ease of prediction when associating

the vectors with images.

8.2.2 Deep Neural Networks

In order for DARCI to leverage the word vectors for image creation, it must learn to associate image

qualities with the semantic vectors. In prior work, DARCI used a single shallow neural network

that did multi-target regression to associate various low-level image features with the word vectors

inferred from the VSM [73]. Training was limited to vectors representing adjectives and the neural

network model could be used to predict the adjective vector for a given image. In this iteration

of DARCI, we replace the shallow neural network and low-level features with four deep neural

networks, which we will call CaffeNet, VectorNet, AvaNet, and StyleNet. These models were all

implemented and trained using a deep learning framework called Caffe [82].

CaffeNet

The CaffeNet model is a pre-trained network that was trained on the ImageNet 2012 competition

data [141], which consists of classifying 1000 different categories of objects ranging from various

animals, to clothing, to household items. This model gives DARCI the capability to perceive and

recognize any of those 1000 items in any image as it finds inspiration for its own artwork. It should

be noted that the labels for some of the 1000 categories were modified to be consistent with our

vector space model. For example, several of the ImageNet categories are various types of dogs that

are not present in DARCI’s VSM vocabulary (e.g., ‘Maltese dog’), so they were simplified to share

the label ‘dog’.

VectorNet

The VectorNet is trained to evaluate how well a given image conveys particular adjectives. For

example, VectorNet can give a score between 0 and 1 for how ‘happy’ or how ‘scary’ an image is.

2https://code.google.com/p/word2vec/

141



www.manaraa.com

It is different from the other deep networks in that it does not do classification. Instead of trying to

predict an image’s adjective label, it does multi-target regression to predict an image’s adjective

vector (from the VSM), which is essentially mapping the image into vector space. To determine

how much the image conveys a particular adjective, cosine similarity is used between the image’s

predicted vector and the adjective’s vector, which yields a similarity score between 0 and 1.

We maintain a dataset of approximately 15,000 images that have either been explicitly hand

labeled or automatically retrieved through Google image search. Once an adjective has enough

labeled images (20 positive and 20 negative), we begin learning that adjective. As of this paper,

there are 145 adjectives that meet this threshold. Our dataset is still very small for training deep

neural networks, and so instead of training from scratch, we start with the pre-trained CaffeNet

model. CaffeNet has been trained with millions of images and has thus already learned various

useful and general image features.

We take this pre-trained model and fine-tune it for adjective vector prediction by replacing

the 1000 dimensional softmax output layer of CaffeNet with a 300 dimensional linear output

layer, where each output node corresponds to each of the 300 dimensions in the vector space

model. Instead of training with the typical softmax loss used for classification, the VectorNet

uses a Euclidean loss for regression (or multi-target regression in this case). The VectorNet model

was trained for 10,000 iterations, with a base learning rate of 0.001 (divided by two every 2000

iterations), a momentum of 0.9, and a weight decay of 0.0005.

Learning to predict an adjective’s vector is a harder task than learning to predict the adjective

directly and, thus, introduces a few trade-offs. First, labeling images with adjectives is a multi-label

classification problem (i.e., an image can be described by more than one valid adjective) and our

new model can only predict one vector at a time, while normally each adjective could be predicted

independently. The second trade-off is that VectorNet is predicting a 300 dimensional vector and has

to account for every adjective. This means that it may not predict the 145 adjectives as accurately as

using separate models for each adjective.
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Random Former Model VectorNet
Coverage 0.709 0.444 0.202
Ranking Loss 0.502 0.199 0.102

Table 8.1: Zero-shot image ranking results comparing our new VectorNet model that uses a deep
neural network compared to the model used in the previous iteration of DARCI [73] (lower scores are
better). The use of a deep neural network improves the system’s ability to perceive and understand
adjectives in images.

The main advantage of learning the vectors, however, is that we can do zero-shot prediction.

In other words, VectorNet is not limited to the 145 adjectives for which it was explicitly trained. It

allows DARCI to take advantage of the semantic structure between words and to evaluate images

according to adjectives it never explicitly learned. For example, DARCI could be trained on ‘scary’

and ‘dark’ images, but not ‘creepy’ images. DARCI could then “understand” what a ‘creepy’ image

looks like because ‘creepy’ is similar in meaning to ‘scary’ and ‘dark’. Even higher level concepts

(e.g., ‘love’, ‘freedom’) can be partially understood by VectorNet through the word vectors.

In prior work, DARCI successfully used a shallow neural network and extracted image

features to associate the adjective vectors with images [73]. The original model was evaluated

using image ranking metrics, and we compare DARCI’s original results with our deep neural

network version in Table 8.1. The results show significant improvement using the deep VectorNet

for zero-shot image ranking. VectorNet will be used by DARCI to analyze the source image for

inspiration, and it will also be used to guide the semantic rendering process to generate images with

particular semantic qualities.

AvaNet

The AvaNet model is a binary classification model trained to determine the aesthetic value of an

image. AvaNet is trained using the AVA dataset, which is a large-scale database for aesthetic

visual analysis [117]. This dataset consists of 255,000 images from the online photography site

www.dpchallenge.com, and each image has aesthetic ratings (from 1 to 10) from hundreds of

professional and amateur photographers.
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We prepared the dataset by first averaging the aesthetic ratings for each image. If the average

rating was less than 5.0, it was considered not aesthetically pleasing, and if the average rating

was greater than 6.0, then it was considered aesthetically pleasing. The rest of the images were

considered ambiguous and were discarded from the training set, but were still included in the test

set (with 5.5 as a threshold). Using this method we obtained a training set of 112,033 images and a

test set of 25,585 images.

We again started with the pre-trained CaffeNet model and fine-tuned it for aesthetic classifi-

cation by replacing the 1000 dimensional softmax layer of CaffeNet with a 2 dimensional softmax

layer. The AvaNet model was trained for 100,000 iterations, with a base learning rate of 0.001

(divided by ten every 15,000 iterations), a momentum of 0.9, and a weight decay of 0.0005. The

AvaNet model was able to achieve a classification accuracy of 69.6% on the test set, compared to

the original AVA paper, which reached a maximum accuracy of 67.0% using SVMs and SIFT/color

features [117].

DARCI will use AvaNet to evaluate final artistic modifications to its images in the aesthetic

rendering component. One of the weaknesses of AvaNet is that it was trained with photographs

and not with paintings (or other non-photorealistic art), which can make it focus and converge on

a smaller variety of artistic modifications. The fourth deep neural network, StyleNet, is used in

conjunction with AvaNet to help overcome this problem.

StyleNet

The StyleNet model is a pre-trained model from the Caffe deep learning library that was trained on

the Flickr Style dataset [82, 88]. The model classifies images into one of twenty different image

styles ranging from painting styles (e.g., impressionism, cubism) to photography styles (e.g., macro,

long exposure). DARCI uses this model in the aesthetic rendering component in conjunction with

AvaNet to evaluate and choose final artistic rendering modifications to its images. This model is

actually used as a style similarity metric between the original source image (the inspiring image)

and the images DARCI creates. We take the 20 output activations of the top layer of StyleNet
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for each image as a vector and perform cosine similarity between them to determine how similar

in style they are. DARCI favors artistic modifications that make its images closer in style to the

original source image and is aesthetically pleasing according to AvaNet.

8.2.3 Finding Inspiration

In order for DARCI to create its own artwork, it needs somewhere to start, it needs some concept

or idea that it can express through its art. The deep neural networks just described give DARCI

some ability to perceive the world through images. With this perception it can look at preexisting

images and partially understand them and use that understanding as inspiration for its own art. A

preexisting source image is inputed into the system, and DARCI uses the top two object labels

from CaffeNet and the top two adjective labels from VectorNet for inspiration. CaffeNet provides

a concrete idea, while VectorNet provides a descriptive/emotional connotation. We opt to use the

top two labels from each model (as opposed to just the top) in order to facilitate variation from the

original source image. We want DARCI’s image to be related to the source image, but also allow

for some leeway.

Figure 8.2 shows three example source images with the top two labels from the CaffeNet

and VectorNet models, as well as a training image from ImageNet that, according to CaffeNet,

closely resembles each source image. In the first source image, CaffeNet has no trouble recognizing

it as an ‘eagle’ because ‘eagle’ is one of the 1000 categories it was trained on (as demonstrated

by its respective training image). For the second source image, however, ‘earth’ or ‘planet’ is

not one of the 1000 categories and CaffeNet misclassifies the image as a ‘jellyfish’. At first this

seems completely wrong, until the example training image of ‘jellyfish’ is considered and it can be

understood why CaffeNet would think ‘jellyfish’. Likewise, the third image is non-photorealistic

and CaffeNet sees it as a ‘petri dish’, which is justifiable according to the example training image.

DARCI’s perception of concrete objects is limited to 1000 items. Furthermore, the CaffeNet

model was trained on photographs, not paintings or other non-photorealistic images, which makes

accurately recognizing objects in such images difficult. This seems like a severe limitation for

145



www.manaraa.com

(a) eagle (kite), menacing
(enigmatic)

(b) jellyfish (slug), dark
(bright)

(c) petri dish (fan), simple
(cute)

(d) (e) (f)

Figure 8.2: The top row shows three example source images inputed into the DARCI system. The
second row shows example training images from the 2012 ImageNet dataset that most closely
resembles its respective source image (according to CaffeNet). Each source image is labeled with
the top category/adjective determined by both CaffeNet and VectorNet respectively (words in
parenthesis are the second place labels). CaffeNet labels the eagle picture correctly because eagle
is one of the 1000 object categories that it knows. The other two source images depict an object
not of those 1000 categories, or is non-photorealistic. In this case, CaffeNet determines the closest
matching category of the 1000 it knows and displays an example training image for justification.

DARCI, however, it can make things interesting from a creativity standpoint. Just as we humans

tend to look for shapes in the clouds or constellations in the stars, DARCI will look for those 1000

items in the various source images it encounters. DARCI will find inspiration according to its

unique perceptual abilities and experiences, which has the potential to enhance its creative ability.

8.2.4 Image Composer

With the vector space model and deep visual models in place, DARCI can begin to produce images.

The image generation process starts with the image composer, which makes heavy use of the vector

space model to create an initial sketch. The image composer works similar to how it was done in

prior work [75], with a few modifications that we will outline here. DARCI finds inspiration in the
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form of two noun concepts and two adjective concepts, and the image composer uses the vector

space model to retrieve their respective vectors and average them together into a single vector.

The image composer gets the concept nearest to the averaged vector (using cosine similarity)

and finds an image on the internet, based on that nearest concept, to be used as a background.

Additionally, DARCI maintains a collection of iconic images for approximately 5,000 concepts, any

of which can be arranged on the background image [154]. At this point, the image composer uses

the VSM to retrieve three to five of these 5,000 iconic concepts that are semantically associated to

the averaged vector. The idea is that DARCI can effectively make use of these word associations as

a decomposition of a (high-level) concept into simpler concepts that together represent the whole.

In many cases, if a (sub)concept is simple enough, it can be represented visually with a single icon

(e.g., the concept ‘rock’ can be visually represented with a picture of a ‘rock’).

Each of these icons is scaled linearly according to how semantically similar its respective

concept is to the averaged vector. The most semantically related icon is placed on top of the

background image near the center and subsequent icons are placed randomly spiraling out from

the center, avoiding overlap if possible. To prevent the background image from dominating and

to help the icons blend in smoothly, the background transparency is set to 75%, while each icon

transparency is set to 25%. The result is a collage of icons on a faded background image that is

conceptually related to the original inspiration (the four words) found from the source image. For

example, suppose the closest concept to the averaged vector was ‘snow’. The vector space model

would send related words like ‘snowflake’, ‘ice’, ‘snowman’, and ‘ski’ to the image composer.

The resulting image would be some composition of simple iconic images of the associated words

overlayed on a background related to ‘snow’.

8.2.5 Semantic Renderer

The semantic renderer takes the initial sketch from the image composer and uses a genetic algorithm

to discover a sequence of image filters for rendering the sketch so that it will artistically reflect

the meaning of the averaged word vector. In this iteration of DARCI, the genetic algorithm now
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incorporates VectorNet in its fitness function as opposed to a simpler shallow network and extracted

images features used in past iterations. At each generation, each candidate image is evaluated by

VectorNet to determine how close (using cosine similarity) its predicted vector is to the averaged

word vector. Other aspects of the fitness function include measures of similarity to the original

sketch (the sketch image should remain somewhat recognizable) and measures of similarity to what

it has produced before (it should be trying different things). The semantic renderer is the oldest

part of DARCI and has been evaluated and described extensively in prior work. In this paper, the

semantic renderer is implemented and used exactly as done in previous iterations (with the exception

of incorporating VectorNet), and further details can be found in prior work [126].

8.2.6 Aesthetic Renderer

The output of the semantic renderer can often be raw and not very consistent with typical artistic

styles. The aesthetic renderer takes the semantic renderer output and further modifies and refines

the image with special artistic filters. DARCI has a collection of 10 such artistic filters that simulate

various mediums and styles such as colored pencil, chalk, finger paint, etc. These filters are

computationally expensive and, thus, it was not practical to incorporate them into the semantic

renderer’s genetic algorithm.

The aesthetic renderer applies every filter with all their possible parameter settings and

picks the best one, which results in a total of 76 filter/setting combinations. The best filter/setting

combination is determined by both AvaNet and StyleNet. AvaNet gives each combination a score

between 0 and 1 for how aesthetically pleasing the resulting image is, while StyleNet gives a score

between 0 and 1 for how closely the resulting image’s style matches the original source image’s

style. These two scores are averaged together and the filter/parameter combination with the highest

average score is chosen for the last rendering step. The output of the aesthetic renderer is the final

image generated by the DARCI system.
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8.2.7 Title/Description Generator

The title/description generator produces a title for the resulting image that helps to communicate its

connection with the original source image, as well as provide insight as to its intent in creating the

image. The title/description generator can also produce a more detailed explanation of DARCI’s

”though process” and walks the viewer through each main step of creating the image. If a human

viewer can understand why the system created art the way it did, then that person can better

appreciate and enjoy the art.

We use a simple template strategy to generate a title, where the system randomly chooses

from a list of, one to two word, title templates. These templates specify what part-of-speech (e.g.,

noun, verb, adjective) should be inserted where. Example templates include “adjective noun”, “noun

verb”, and “adverb”. Once a template is chosen, the system must insert appropriate words in the

template. These words should relate to both the inspiration DARCI found in the source image, as

well as to how the final image actually turned out.

We start by gathering potential words to fill in the template, which initially include the top

noun and the top adjective from the original inspiration. We then use CaffeNet and VectorNet to

evaluate the final image and get an additional noun and adjective. At this point, our initial set of

words include two nouns and two adjectives. To handle verbs and adverbs, to add variety, and

to generate more interesting titles, we use the vector space model to find alternative semantically

relevant words as we fill in the template.

For example, when we encounter an “adjective”, the system randomly picks one of the two

initial adjectives, randomly picks one of the top 5 semantically similar adjectives from the VSM,

and inserts it in place of the “adjective” placeholder. For “noun” we randomly pick one of the

two initial nouns and then randomly pick from the top 5 semantically similar nouns. For “verb”,

we randomly pick from the top 5 semantically similar verbs (based on one of the 2 nouns). For

“adverb”, we randomly pick from the top 5 semantically similar adverbs (based on one of the 2

adjectives). The result is a title for the final image that is relevant to the initial inspiration, and/or

the final image.
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Optionally, DARCI can generate a more detailed description of its “thought process” as it

generated the art. This description shows the original source image and explains what inspiration it

found. It then justifies what it saw by showing a similar image it has seen before from the CaffeNet

training data (see Figure 8.2 for examples). The system then explains how it created an initial sketch

with a background image and icons. It then shows the modified sketch after the semantic rendering.

Finally, the description shows the final image after the aesthetic renderer and displays the title.

8.2.8 End-to-End Image Generation

DARCI’s end-to-end image generation process has several steps and follows the diagram presented

in Figure 8.1. Here we summarize the entire process at a high level and show some example images.

• A preexisting source image is inputed into the system.

• The source image is analyzed by both CaffeNet and VectorNet to find inspiration.

• CaffeNet returns the top 2 nouns it sees in the source image and VectorNet returns the top 2

adjectives.

• The word vectors (from the Vector Space Model) for each of the these words are averaged

together into a single vector.

• The Image Composer creates an initial sketch by placing semantically associated icons on top

of a related background image.

• The Semantic Renderer uses a genetic algorithm and VectorNet to render the initial sketch in

a style consistent with the averaged word vector.

• The Aesthetic Renderer further modifies the image by applying a special artistic filter that is

chosen based on AvaNet and StyleNet.

• Finally, a title (and optionally a detailed description) is generated based on the initial inspira-

tion and the final image.
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(a) (b) (c)

(d) Overcast Slop (e) Whimsical Puzzle (f) Edgy Pushover

Figure 8.3: The first row shows three example source images inputed into the DARCI system.
The second row shows the final images DARCI produced for each source image, including their
respective titles.

Figure 8.3 shows example images generated by DARCI with just the source image, the final

image, and the title. Figure 8.4 shows example intermediate images from the entire image creation

process, including a full description generated by DARCI.

8.3 Evaluation

DARCI is a large system with many components that work together to autonomously produce visual

art, and each has been evaluated extensively in prior work [73, 75, 126]. Here we focus on the

DARCI system as a whole and evaluate how well the system can create visual art that people can

appreciate. We want to gain insights into the correlation between perceived meaning expressed

through DARCI’s art and its perceived creativity. Additionally, DARCI’s perceptual and artistic

abilities are different than humans, which can potentially facilitate the creation of more interesting
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(a) source (b) example (c) sketch (d) rendered (e) Overdress

Figure 8.4: An example showing the intermediate images of each step of DARCI’s image creation
process. A generated description is as follows: “I was looking for inspiration from this image (a),
And it made me feel gloomy and dreamy. It also made me think of this image that I’ve previously
seen (b), which is a picture of a poncho. So I started an initial image of my own by searching for
a background image on the Internet based on poncho, gloomy, and dreamy. Then I took basic
iconic images associated with those concepts and resized/placed them on the background according
to how relevant they were. This was the result (c). I then modified it in a style related to poncho,
gloomy, and dreamy, which resulted in this image (d). I did a final modification based on aesthetic
quality and how closely the style related to the original image (e). The end result perhaps looks
more like a cloak or a vestment, and it feels particularly gloomy. It is called Overdress.”

and novel images. However, if the art is too different, then human viewers may not be able to enjoy

the art. Thus we want to assess how much people enjoy and appreciate DARCI’s art across different

degrees of understanding DARCI’s “thought process”.

Will knowing more about DARCI’s process for creating art help people to appreciate its

art more or less? If DARCI has a chance to “explain itself”, then will people relate to its artwork

better? Will they be more willing to say that DARCI’s images are creative and that the system has

intention? In order to evaluate this, we use use an online survey and ask human viewers to assess

DARCI’s art.

8.3.1 Online Survey

We had DARCI generate 30 images inspired by a large variety of source images, ranging from

photographs, to famous artwork, to other computer generated art. Each survey participant evaluated

four of DARCI’s images, which were randomly selected from the pool of 30 for each user. To

start the survey, each user was given instructions and a brief overview of DARCI. This overview
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explained that DARCI is a computer system that creates visual art that conveys meaning, and that it

works by looking at a source image for inspiration.

The participants of the survey were randomly assigned to one of three groups, which we

will call BASIC, DESC, and BOTH. The users in the BASIC group were only shown the source

image, the final image, and the title (see Figure 8.3), and then asked to evaluate the final image. The

users of the DESC group were shown the full description generated by DARCI (see Figure 8.4), and

then asked to evaluate the final image. In the BOTH group, the first two images the user saw were

the full description, while the last two images were just the source image, the final image, and the

title. After evaluating the four images, users were asked a few questions about the DARCI system

in general.

When querying users about each image, we followed a survey template similar to one we

developed in a previous study to measure the perceived creativity of images and to assess how well

they communicated an intended concept [75]. Our here survey consisted of seven Likert items

(7 point scale) [100], where volunteers were asked how strongly they agreed or disagreed with

each statement as it pertained to one of DARCI’s images. The seven statements we used were

(abbreviation of item in parentheses):

I like the image. (like)

Prior to this survey, I have never seen an image like this one. (never seen)

I think the image would be difficult to create. (difficult)

I can see how the image relates to the source image. (relate)

I think DARCI created the image with intent. (intent)

I think the image conveys meaning. (meaning)

I think the image is creative. (creative)

For comparison, like, never seen, difficult, and creative are the same questions used in our

previous study, while the other three questions were added for this survey. After the users evaluated

four of DARCI’s images, they were asked the following (Likert) questions about the DARCI system

in general:

I can appreciate DARCI’s art. (appreciate)

I can understand why DARCI creates art the way it does. (understand)

153



www.manaraa.com

DARCI Images DARCI System
Omitted Item Alpha Value Omitted Item Alpha Value
None 0.830 None 0.744
Like 0.806 Appreciate 0.626
Never seen 0.843 Understand 0.795
Difficult 0.799 Relate To 0.613
Relate 0.825 Being Creative 0.683
Intent 0.802
Meaning 0.788
Creative 0.779

Table 8.2: Alpha values measuring consistency of survey questions for both the image questions
and the DARCI system questions. The lower the alpha value, the more consistent the omitted item
is with the rest of the items. For the image questions, creative is the most important question, while
relate to is most important for the DARCI system questions.

I can relate to how DARCI creates art. (relate to)

DARCI is being creative. (being creative)

8.3.2 Results

We received a total of 307 participants who took the survey, with 103, 101, and 103 participants in

groups BASIC, DESC, and BOTH, respectively. Some survey participants never fully completed

the survey, but we still used their partial responses. This led to each image being evaluated by an

average of 27 people in total across all three groups.

Question Consistency

In a Likert scale survey, it is important that the items correlate with each other to some degree. Since

we are interested in understanding how conveying meaning and intent influences the perceived

creativity of DARCI and its images, the Likert questions should be consistent with each other.

We calculated the Cronbach alpha of the survey with respect to these items [35]. Our survey

received Cronbach alphas of 0.830 and 0.744 for the image questions and DARCI system questions,

respectively, indicating a high degree of consistency. In order to determine which questions were

the most pertinent to the consistency of the survey, we calculated the Cronbach alpha with each

question omitted. The results for the image questions (across all images and groups) and the DARCI

system questions are shown in Table 8.2.
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From this we see that the two most important items for the image questions, in terms of

consistency with the other items, are the statements: “I think the image is creative”, and “I think

the image conveys meaning”. Removing these statements resulted in the greatest drop in alpha

values. The least important item was “Prior to this survey, I have never seen an image like this one.”

Removing this question actually resulted in a higher alpha than had the statement remained. In any

case, every question omission still resulted in a satisfactory alpha value. From this we conclude

that all of the items are valuable to our survey. In addition, since the most consistent items were

one directly asking about creativity and one asking about conveying meaning, we conclude that

the average survey results do indeed offer a valid measure of creativity and that images that better

convey meaning are thought to be more creative.

For the DARCI system questions, the most important item is the statement: “I can relate

to how DARCI creates art”. The least important is the statement: “I can understand why DARCI

creates art the way it does”. This is interesting because it indicates that being able to relate to

DARCI’s art is important, but understanding the details of DARCI’s creative process does not matter

that much. Indeed, it may even be detrimental to the perceived creativity of the system as we’ll see

when we consider the results for the different groups of participants.

Group Comparison

We compare the average ratings of each group of survey participants for the image questions in

Figure 8.5 and the DARCI system questions in Figure 8.6. For all image questions, there were no

statistically significant differences between the groups. Although the intent question was slightly

higher for the DESC group, and the like question was slightly higher for the BASIC group. For the

DARCI system questions, the understand question had the only statistically significant difference,

with the DESC group rating it higher than the BASIC group. The being creative and appreciate

questions, however, were rated slightly higher by the BASIC group participants.
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Figure 8.5: Average ratings for all seven image questions comparing each group of survey partici-
pants. The BOTH group was broken down into the first 2 images with the full description (BOTH D)
and the last 2 images with the basic description (BOTH B). There is no statistically significant
difference between the groups. However, the intent question was slightly higher for the DESC
group, and the like question was slightly higher for the BASIC group.

The DESC group participants were given a non-technical explanation of DARCI’s “thought

process” for each image it created, while the BASIC participants were only given the source image,

final image, and title. Thus, it makes sense that DESC users would rate the understand question

higher than BASIC users. However, having the full description made the DARCI system, in general,

seem less creative and its art less liked, which seems counterintuitive. A reason for this could be

that providing people with an explanation removes the “mystery” behind the artwork. Without the

full description, people had to come up with their own explanations as to why DARCI did what it

did. The people in the BASIC group had to work harder at discovering meaning in the art, while the

DESC users had it partially given to them.

This seems to be consistent with Csı́kzentmihályi’s notion that “...the aesthetic experience

occurs when information coming from the artwork interacts with information already stored in the

viewer’s mind...” [36]. The absence of the full description allowed people in the BASIC group

to more freely interact with the artwork, and were thus more likely to have a positive aesthetic

experience. This in turn is why the BASIC group liked the images more and rated the DARCI

system as being more creative than the DESC group.
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Figure 8.6: Average ratings for all four DARCI system questions comparing each group of survey
participants. The only question with statistical significance between the groups was the understand
question. The DESC group understands DARCI’s art creation process better than the BASIC group.
However, the BASIC group thinks DARCI is slightly more creative than the DESC group.

Comparison With Prior Results

In Figure 8.7, we compare the overall average ratings of the like, never seen, difficult, and creative

image questions with the ratings for the same questions in a prior study evaluating a previous

iteration of DARCI [75]. The previous study used a 5 point scale, while we currently use a 7 point

scale, so the results show the previous study adjusted to a 7 point scale for comparison. We see

that the current version of DARCI is generally rated higher for all questions than the older version,

which demonstrates that current enhancements to the DARCI system are improving its ability to

create visual art that is generally more liked and thought to be more creative by human viewers.

Best and Worst Images

Here we show the best and worst of the 30 images in the survey according to each question across

all groups. Figure 8.8 shows the highest rated images, while Figure 8.9 shows the lowest rated

images for each question. Because the image questions are generally consistent with each other,

often the same image would be rated the highest or lowest for multiple questions.
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Figure 8.7: Average ratings for four of the image questions compared to the ratings of the same
questions on a previous iteration of DARCI. These results indicate improvement in that people
generally prefer the artwork created by our most recent version of DARCI.

8.4 Conclusion

We have outlined the DARCI system and elaborated on new components of the system in detail.

Specifically, we improved DARCI’s semantic model by incorporating deep neural networks that

have been trained to assess the aesthetic quality, the artistic style, and the semantic content of images.

This improved semantic model allows DARCI to better evaluate and understand its own artifacts in

order to produce semantically relevant and aesthetically pleasing images. It also allows DARCI to

evaluate other existing images in order to find inspiration and generate its own semantically related

images in response. Additionally, we included an aesthetic rendering component that enabled

DARCI to more consistently produce aesthetically pleasing images, and a title/description generator

that allows DARCI to provide insight into how and why it creates art the way it does.

We evaluated DARCI through an online survey, where participants rated DARCI’s artwork

on various criteria related to creativity, expression of meaning, and likability. We concluded that

images that are perceived to convey meaning are also perceived as more creative. The results

also indicate that people who had a better understanding of DARCI’s creative process tended to

appreciate the artwork less. This is likely due to removing the “mystery” behind DARCI’s art and

restricting the viewers ability to find their own meaning in the artwork. Additionally, we compared
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(a) like, difficult, creative (b) never seen (c) relate (d) intent, meaning

(e) Melancholy Bungalow (f) Chime Oversleep (g) Trout (h) Disturbingly

Figure 8.8: The highest rated of DARCI’s artwork corresponding to each image question. The top
row shows the inputed source image along with the question(s) DARCI’s image was rated highest
for. The bottom row shows the corresponding image DARCI created along with its title.

the results of the survey with results from a previous iteration of DARCI. We found that DARCI’s

newer work is generally more liked and thought to be more creative than the past iteration, which

demonstrates improvement.

In future work, we would like to extend DARCI’s abilities in generating and modifying

images. Currently, it is limited to arranging collages of icons and Photoshop-like image filters. We

want to provide DARCI with a more varied set of artistic skills, which could include the ability

to make individual brush strokes, to do procedural/algorithmic art, or to incorporate 3D models

and visual effects. We would also like to more fully incorporate the deep neural networks into

the image rendering process. These models are capable of not only understanding images, but

also directly generating novel and semantically relevant images through various state-of-the-art

techniques [45, 97]. Such methods would allow DARCI to directly make use of its perceptual

abilities to facilitate imagination and to potentially generate actual concrete objects and scenes

instead of relying on collections of icons.
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(a) relate (b) intent, meaning (c) like, never seen, difficult,
creative

(d) Bluish Schnapps (e) Mouse (f) Textured

Figure 8.9: The lowest rated of DARCI’s artwork corresponding to each image question. The top
row shows the inputed source image along with the question(s) DARCI’s image was rated lowest
for. The bottom row shows the corresponding image DARCI created along with its title.
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Chapter 9

Exhibitions, Galleries, and Art Community Collaborations

Over the years we have participated in several exhibitions, galleries and collaborations with

other artists/systems. These events have been in collaboration with David Norton and his early work

on DARCI. DARCI has had the opportunity to act as an art juror, an artist, and a collaborator, and

we summarize each of these events here.

9.1 Fitness Function

A semester long collaboration with Brigham Young University’s Visual Arts program culminated

in an interactive art exhibit held in the BYU Harris Fine Arts Center from March 19th to the 30th,

2010 [122]. The exhibit was called Fitness Function1, and DARCI acted as the curator. Initially the

exhibit consisted of a room with only DARCI (installed on a computer), a printer, some instructions,

and a blank wall. Visitors could submit their art to DARCI, and DARCI evaluated it in a way similar

to how it evaluates its own images. The submissions that DARCI scored high enough were printed,

and the visitor could hang their artwork on the wall. Figure 9.1 shows photographs of the gallery

after it received several qualifying submissions. Reactions to the exhibit were varied, ranging from

outrage, to intrigue, to excitement, and it challenged many notions about how art should be judged

and about what makes art good. In that regard, DARCI’s involvement in Fitness Function was a

success as it caused a re-evaluation of what art really means.

1A website documenting Fitness Function can be found at: http://darci.cs.byu.edu/
fitnessfunction/
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(a) (b)

Figure 9.1: Photographs of the Fitness Function art exhibit at the BYU Harris Fine Arts Center.

The success of Fitness Function inspired us to repeat the exhibit for an evening at theACM

Conference on Creativity and Cognition in Atlanta, GA. The second Fitness Function exhibit was

held in the High Museum of Art and covered by NPR’s Studio 3602. The exhibit again caused

visitors to question their notions about art curation and about what makes art meaningful.

9.2 Utah County Art Gallery

In 2011, we participated in the Utah County Art Gallery: Fall Photography and Digital Art Show by

submitting two digital images created by DARCI. These images were selected from a pool of images

DARCI rendered using a blank source image for the adjectives ‘happy’, ‘peaceful’ and ‘scary’.

Because we chose the final two images from several created by DARCI, these submissions were

more of a collaboration between us and DARCI. The first image we submitted we created using the

adjective ‘peaceful’ and a blank black source image (Figure 9.2(a)). The second image was also

rendered using the adjective ‘peaceful’, but with a blank white source image (Figure 9.2(b)). The

judges of the art show had no knowledge that the art was created by a computer program, and the

image in Figure 9.2(a) won second place in the Digital Art category.

2http://www.wnyc.org/story/designing-computer-great-taste/
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(a) “Peaceful on Black 4-3” (b) “Cold Avian”

Figure 9.2: Two images created by DARCI that were submitted to the Utah County Art Gallery Fall
Photography and Digital Art Show in 2011 (with provided titles). “Peaceful on Black 4-3” won
second place in the Digital Art category.

9.3 Evolutionary Art, Design, and Creativity Competition

In 2013, we submitted several images to the GECCO Evolutionary Art, Design, and Creativity

Competition held in Amsterdam. The version of DARCI described in Chapter 4 is capable of

rendering original images for any arbitrary concept by composing a collage of iconic images and

then rendering the collage according to semantically related adjectives. We had DARCI render

several different images for several different high level concepts, and we then selected the best

images to include in the competition. The submitted images, along with their source concept and a

short description we provided for the competition to explain icon and adjective choices, are shown

in Figure 9.3. These images were exhibited as finalists for the competition.

9.4 You Can’t Know My Mind

Also in 2013, we joined with Simon Colton at the Galerie Oberkampf in Paris, France for a festival

celebrating computational creativity [27]. The festival was called You Can’t Know My Mind, and
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demonstrated several computationally creative systems. Colton’s The Painting Fool [25] used

DARCI’s adjective neural networks, which enabled it to justify its own artwork and reflect upon it.

Participants in the festival could have their photographs taken for reference. At which point,

The Painting Fool/DARCI hybrid system would figure out its “mood” using sentiment analysis of

current news stories from The Guardian. The “mood” was then used to select an adjective that the

system would reference in producing an artistic portrait of the participant. DARCI would select a

non-photorealistic image filter and abstract background that best conveyed the chosen adjective, and

the filter would then be applied to the background. Next, The Painting Fool would artistically paint

the photograph on the filtered background in a style dictated by its “mood”. DARCI would then

analyze the resulting image to see how well the final image conveyed the selected adjective. Finally,

using basic language templates, the system would return a description of the portrait including what

it meant to create, why it painted what it did, and how it felt about the final product.
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(a) War (b) Epic Drug Scandal (c) Guilty Protest

(d) Murder (e) Artificial Intelligence

Figure 9.3: Images submitted to the Evolutionary Art, Design, and Creativity Competition held in
Amsterdam as part of GECCO (Genetic and Evolutionary Computation Conference). The concepts
used to create the pieces are listed under each image. (a) War incorporates concepts such as tank,

gun, bomber and atom and renders them with a style that suggests explosive and bloody. (b) Epic
Drug Scandal weaves a dizzy conception of icons such as pill, marijuana, medicine and syringe. (c)
Guilty Protest combines concepts such as student, banner, crime and jail in a rendering designed
to evoke a feeling of sadness. (d) Murder offers a dark, oppressive evocation of the grim reaper,
electrocution and weapons. (e) Artificial Intelligence offers a quirky mix of conceptual proxies for
intelligence, such as brain and school, with elements associated with artificial, like flower and lung,
rendered to evoke the idea of light.
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Chapter 10

Conclusion

Throughout this dissertation we have presented enhancements to DARCI, which is a system

designed to autonomously create visual art that conveys meaning to human viewers. Through

designing, implementing, and evaluating DARCI, we have been able to explore computational

creativity and make several contributions to the field. Broadly, these contributions consist of the

development of a one-of-a-kind autonomously creative visual art system (DARCI); general models,

frameworks, theories, and philosophical ideologies related to computational creativity and other

domains; and influence on the art community through participating in several art galleries, art

exhibits, and collaborations. Specifically, the contributions are listed as follows:

• We have continued the development of DARCI, which is currently the only system that can,

in full autonomy, create visual art that explicitly conveys meaning. It is the only system of

its kind with a sophisticated cognitive model that initiates and drives its creative process by

giving it advanced perceptual abilities and broad semantic understanding.

• We have developed novel methods for automatically evaluating the semantic qualities of

images using clustering techniques (Chapters 2 and 6). We also have developed human

surveys for evaluating DARCI’s ability to generate meaningful images that can be considered

creative (Chapters 4 and 8).

• Through these surveys we have been able to find evidence suggesting that images that

successfully communicate an intended meaning are perceived as more likable and creative

than images that don’t seem to convey any particular meaning (Chapters 4 and 8).
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• We have developed a novel semantic model based on a combination of human free association

norms and automatically derived corpus-based word associations. We have shown that not

only can this model be used by DARCI to create visual art that conveys high-level concepts,

but also it can be used to automatically solve several standardized word analogy/similarity

tasks and play word guessing games online (Chapter 3).

• We designed a domain independent computational framework for facilitating imagination,

called the Associative Conceptual Imagination (ACI) framework, which is based on cognitive

theories of human imagination (Chapter 5).

• The ACI framework was successfully applied to DARCI, which allowed the system to “imag-

ine” how to render images for concepts on which it was never explicitly trained (Chapter 6).

This was also a contribution to the field of computer vision, as it enabled DARCI to do

zero-shot shot image ranking by taking advantage of semantic structure learned through

written text.

• We developed a general theory regarding the role of perception as a necessary component of

the creative process (Chapter 7). We explored the fields of cognitive psychology, neuroscience,

art history, and artificial general intelligence to argue the need for advanced perceptual abilities

in creative systems.

• We then incorporated state-of-the-art deep learning models into the DARCI system to provide

it with more advanced perceptual abilities (Chapter 8). This allowed DARCI to better evaluate

and understand its own artifacts in order to produce semantically relevant and aesthetically

pleasing images and to find inspiration in preexisting images.

• DARCI has impacted the art community by being involved in several art galleries, art exhibits,

and collaborations (Chapter 9). This resulted is meaningful discussions about what makes

good art, how art is judged, how the creative process works, and the role of computers in the

visual arts.
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Although DARCI has seen much success, it is not without its criticisms. Many people

who have evaluated DARCI’s art have sometimes called it simple, childish, not great, or just plain

ugly. Many people also point out other computational systems (such as The Painting Fool) that

can consistently produce artwork that is usually more aesthetically pleasing than DARCI’s art. We

certainly acknowledge these criticisms, and having DARCI produce better looking images is one of

our research goals. However, it is important to keep in mind that our goal is for DARCI to be a fully

autonomous system, and it has been built from the ground up to be so. It is making its own creative

decisions based on what it has learned about art and semantics through various machine learning

techniques.

Other image producing systems are not at the same level of autonomy as DARCI. They

either require human judgment/intervention (i.e., used as a tool for human artists), or they have been

hand engineered for very specific types of art (e.g., fractal art). Even other visual art systems in the

field of computational creativity, such as The Painting Fool, rarely incorporate any self-evaluation

and have not reached the same level of autonomy as DARCI. Some systems do have self-evaluation,

but it is typically based on some static hand engineered metric and not based on semantic real world

understanding.

While other systems may focus on the quality of the art itself, we focus on the quality of the

process in creating the art. In doing so, we are subject to what is called the latent heat effect—as the

creative responsibility given to systems increases, the value of its output does not initially increase

(and may even decrease) [28]. DARCI is taking on more creative responsibility than other generative

art systems, and so we should not be surprised that the initial quality of the art is negatively affected.

As we have considered ways to truly model and understand the creative process, it has always come

down to the system’s ability to perceive and understand its own artifacts in the context of real-world,

human-relatable concepts. Even with the perceptually grounded semantic models we have built into

DARCI, it is still limited in scope and ability compared to humans. Thus, we cannot expect DARCI

to consistently and autonomously produce human-level artwork until its perceptual abilities and

semantic understanding have also reached human levels.
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10.1 Future Work

The research goals for DARCI are ambitious and go beyond the scope of one dissertation, thus

there is much work yet to be done on DARCI. Future work certainly includes improving the quality

of DARCI’s artwork, which can be achieved in a number of ways. One way is by improving and

expanding the semantic and perceptual models incorporated into DARCI. Many of the current

limitations of these models are limitations in other fields such as computer vision and computational

semantics, and advancements in these other fields can be included in DARCI. Current state-of-the-art

computer vision models, such as deep neural networks, have yet to be fully utilized by DARCI

(or by any computationally creative system). These models are capable of not only understanding

images, but also directly generating novel and semantically relevant images.

Another way to improve DARCI’s artwork would be to expand DARCI’s capabilities in the

actual creation and modification of images. Currently, it is limited to arranging collages of icons and

Photoshop-like image filters. We want to provide DARCI with a more varied set of artistic skills,

which could include the ability to make individual brush strokes, to do procedural/algorithmic art,

or to incorporate 3D models and visual effects.

We would like DARCI to continue collaborating with other creative systems and to partici-

pate in art galleries and exhibits. For example, DARCI could work with a system that generates

stories by creating illustrations that help tell the story. DARCI could work with systems that create

music to produce relevant visualizations or use music for inspiration. There are creative systems

designed to automatically create video games, and DARCI could be used to create backgrounds

or textures. We also want to hold another art exhibit that showcases the work of human artists

alongside DARCI’s work, where they each create artwork in response to the other’s art.

Ultimately, we are interested in understanding and formalizing the creative process, in-

dependent of a specific domain. The knowledge we have gained through working with DARCI

can potentially be applied to other domains, such as music, recipes, and video games. Building

a sophisticated cognitive model with semantic understanding grounded in perception is a general

design that can be applied to multiple domains. In fact, a system that is capable of working in
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multiple domains has greater flexibility to innovate and find inspiration across different modes of

experience, which would increase its creative potential.
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